18£®Èçͼ£¬¡÷ABOµÄ¶¥µãA¡¢BµÄ×ø±ê·Ö±ðΪ£¨0£¬4£©¡¢£¨-2£¬0£©£¬Ö±Ïßl½»xÖáÓÚC¡¢½»yÖáÓÚD£¬ÇÒËüËù¶ÔÓ¦µÄº¯Êý±í´ïʽΪy=-x+6£»¹æ¶¨£º¶ÔÓÚÆ½ÃæÉϵÄijһµãM£¬µ±ËüÑØË®Æ½ÏòÓҵķ½ÏòÆ½ÒÆ£¬Æ½ÒƵ½Ö±ÏßlÉÏΪֹ£¬Õâ¸ö¹ý³ÌÖÐÆ½ÒƵľàÀ룬³ÆÎªµãMµÄ¡°ÓÒÆ½ÒƾàÀ롱£®
£¨1£©ÇëÄãÖ±½Óд³öDµã×ø±ê¡¢AµãµÄ¡°ÓÒÆ½ÒƾàÀ롱£¨AEµÄ³¤¶È£©¡¢Ö±ÏßABµÄ±í´ïʽ£»
£¨2£©ÈôÏß¶ÎABÉÏÓÐÒ»µãPµÄ¡°ÓÒÆ½ÒƾàÀ롱PF=6£¬ÊÔÇó³öPµãµÄ×ø±ê£»
£¨3£©ÈôijµãµÄ¡°ÓÒÆ½ÒƾàÀ롱²»³¬¹ý6£¬Ôò³Æ¸ÃµãΪ¡°°²È«µã¡±£®ÔÚ¡÷ABOµÄÄÚ²¿»ò±ßÉϵÄËùÓС°°²È«µã¡±¼¯ÖÐÔÚÒ»¶¨µÄÇøÓò£¬ÊÔÇó³öÕâ¸öÇøÓòµÄÃæ»ý£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃD¡¢EµãµÄ×ø±ê£¬¸ù¾ÝƽÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø±ê¼õ½ÏСµÄºá×ø±ê£¬¿ÉµÃAEµÄ³¤£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃABµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝµãÔÚÖ±ÏßÉÏ£¬¿ÉµÃP£¬FµãµÄ×ø±ê£¬¸ù¾ÝPFµÄ¾àÀ룬¿ÉµÃ¹ØÓÚbµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾ÝƽÐÐÏß¼äµÄƽÐÐÏß¶ÎÏàµÈ£¬¿ÉµÃPOÉϵĵãÊǰ²È«µã£¬Ïß¶ÎAPÉϵĵãÊǰ²È«µã£¬ÔÙ¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=6£¬¼´D£¨0£¬6£©£»
µ±y=4ʱ£¬-x+6=4£¬½âµÃx=2£¬¼´E£¨2£¬4£©£¬
AEµÄ³¤Îª2-0=2£»
ÉèABµÄ½âÎöʽΪy=kx+b£¬½«A£¨0£¬4£©£¬B£¨-2£¬0£©´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{-2k+b=0}\\{b=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=4}\end{array}\right.$£¬
Ö±ÏßABµÄ±í´ïʽy=2x+4£»
£¨2£©ÓÉÏß¶ÎABÉÏÓÐÒ»µãP£¬ÉèP£¨$\frac{b-4}{2}$£¬b£©£¬
ÓÉFÔÚCDÉÏ£¬ÉèF£¨6-b£¬b£©£®
ÓÉPFµÄ³¤Îª6£¬µÃ
6-b-$\frac{b-4}{2}$=6£®
½âµÃb=$\frac{4}{3}$£¬
$\frac{b-4}{2}$=$\frac{\frac{4}{3}-4}{2}$=-$\frac{4}{3}$£¬
¼´P£¨-$\frac{4}{3}$£¬$\frac{4}{3}$£©£»
£¨3£©Èçͼ£º

¹ýPµãƽÐÐCDµÄ½âÎöʽΪy=-x£¬
POÉϵĵãÊǰ²È«µã£¬APÉϵĵãÊǰ²È«µã£¬
¡÷APOÊǰ²È«ÇøÓò£¬
S¡÷APO=$\frac{1}{2}$AO•|Px|=$\frac{1}{2}$¡Á4¡Á|-$\frac{4}{3}$|=$\frac{8}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬ÀûÓÃÁË×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµÇóµãµÄ×ø±ê£¬£¨2£©ÀûÓÃÆ½ÐÐÓÚxÖáµÄÖ±ÏßÉÏÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø±ê¼õ½ÏСµÄºá×ø±êµÃ³ö¹ØÓÚbµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬£¨3£©ÀûÓÃÁËÆ½ÐÐÏß¼äµÄƽÐÐÏß¶ÎÏàµÈ³öµÃPOÉϵĵãÊǰ²È«µãÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®½â·Öʽ·½³Ì£º
£¨1£©$\frac{1}{x-2}$=$\frac{4}{{x}^{2}-4}$          
£¨2£©$\frac{{x}^{2}-4x}{{x}^{2}-1}$+1=$\frac{2x}{x+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¼ÆËã$\sqrt{16}$µÄƽ·½¸ù½á¹ûÊÇ£¨¡¡¡¡£©
A£®¡À2B£®¡À4C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¶þ´Îº¯ÊýµÄ½âÎöʽÊÇy=x2-2x-3£®
£¨1£©ÓëxÖáµÄ½»µã×ø±êÊÇ£¨-1£¬0£©£¬£¨3£¬0£©£¬¶¥µã×ø±êÊÇ£¨1£¬-4£©£»
£¨2£©ÔÚ×ø±êϵÖÐÀûÓÃÃèµã·¨»­³ö´ËÅ×ÎïÏߣ»
x¡­¡­
y¡­¡­
£¨3£©½áºÏͼÏó»Ø´ð£ºµ±-2£¼x£¼2ʱ£¬º¯ÊýÖµyµÄȡֵ·¶Î§Êǵ±-2£¼x£¼1ʱ£¬-4£¼y£¼5£»µ±1£¼x£¼2ʱ£¬-4£¼y£¼-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â·½³Ì£º
£¨1£©$\frac{2}{x-3}$=$\frac{3}{x}$                  
£¨2£©$\frac{1}{x-2}$+3=$\frac{1-x}{2-x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®£¨1£©a4-a2b2
£¨2£©4x3+4x2y+xy2
£¨3£©x2+4x-21
£¨4£©x2-y2+2y-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª¶þ´Îº¯Êýy=2x2+1£¬Èôµã£¨-2£¬y1£©Ó루3£¬y2£©Ôڴ˶þ´Îº¯ÊýµÄͼÏóÉÏ£¬Ôòy1£¼ y2£®£¨Ìî¡°£¾¡±¡¢¡°=¡±»ò¡°£¼¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=a1x2+c¾­¹ýµãB1£¨1£¬$\frac{1}{3}$£©£¬B2£¨2£¬$\frac{7}{12}$£©£®ÔÚ¸ÃÅ×ÎïÏßÉÏÈ¡µãB3£¨3£¬y3£©£¬B4£¨4£¬y4£©¡­Bn£¨n£¬yn£©ÔÚxÖáÉÏÒÀ´ÎÈ¡µãA1£¬A2£¬¡­£¬An£¬Ê¹¡÷A1B1A2£¬¡÷A2B2A3¡­·Ö±ðÊÇÒÔ¡ÏB1£¬¡ÏB2£¬¡­£¬¡ÏBnΪ¶¥½ÇµÄµÈÑüÈý½ÇÐΣ¬ÉèA1µÄºá×ø±êΪt£¨0£¼t£¼1£©£®Ôò
£¨1£©¸ÃÅ×ÎïÏߵıíʽy=$\frac{1}{12}$x2+$\frac{1}{4}$£»
£¨2£©S${\;}_{¡÷{A}_{100}{B}_{100}{C}_{101}}$=$\frac{10003}{12}$t£»£¨ÓÃtµÄ´úÊýʽ±íʾ£©
£¨3£©ÔÚÕâЩµÈÑüÈý½ÇÐÎÖÐÈôÓÐÖ±½ÇÈý½ÇÐΣ¬t=$\frac{2}{3}$»ò$\frac{7}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Î÷ÄÏÂÁÒµ¼¯Íųɹ¦ÑÐÖÆ³öÒ»ÖÖÐÂÐÍÄøºÏ½ð²úÆ·£®ÅúÁ¿Éú²úºóÏòA¡¢BÁ½µØÏúÊÛ£¬Êг¡»ð±¬µÃ¹©²»Ó¦Çó£®ÒÑÖªÕâÖÖ²úƷÿÔµIJúÁ¿x£¨¶Ö£©Óë³É±¾y£¨ÍòÔª£©³É¶þ´Îº¯Êý¹ØÏµ£ºy=$\frac{1}{10}$x2+5x+90£¬ÔÚA¡¢BÁ½µØÃ¿¶ÖµÄÊÛ¼ÛPA£¨ÍòÔª£©ºÍPB£¨ÍòÔª£©¾ùÓëx³ÉÒ»´Îº¯Êý£®
£¨1£©ÒÑÖªPA=-$\frac{1}{20}$x+14£¬ÈôÿÔµIJúÁ¿x£¨¶Ö£©¶¼ÔÚAµØÏúÊÛ£¬ÇëÄãÓú¬xµÄ´úÊýʽ±íʾÔÚAµØÃ¿ÔµÄÏúÊ۶²¢ÇóÀûÈóWA£¨ÍòÔª£©ÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¨×¢£»ÀûÈó=ÏúÊÛ¶î-³É±¾£©
£¨2£©ÈôPB=-$\frac{1}{10}$x+b£¨bΪ³£Êý£©£¬Èç¹ûÿÔµIJúÁ¿x£¨¶Ö£©¶¼ÔÚBµØÏúÊÛ£¬¿É»ñµÃµÄ×î´óÀûÈóΪ35ÍòÔª£¬ÇóbµÄÖµ£»
£¨3£©ÂÁÒµ¼¯ÍÅ2014Äê2Ô¼ƻ®Éú²ú²¢ÏúÊ۸òúÆ·18¶Ö£¬¸ù¾Ý£¨1£©£¬£¨2£©ÖеĽá¹ûÇëÄãͨ¹ý¼ÆË㲢ѡÔñÔÚAµØ»¹ÊÇÔÚBµØÏúÊÛ²ÅÄÜ»ñµÃ½Ï´óµÄÀûÈó£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸