【题目】如图,∠MAN=90°,点C在边AM上,AC=2,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在的直线对称,点D,E分别为AB,BC的中点,连接DE并延长交A′C所在直线于点F,连接A′E,当△A′EF为直角三角形时,AB的长为_____.
【答案】或2.
【解析】
当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=2,根据直角三角形斜边中线的性质得:BC=2A'B=4,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=2.
解:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,
∵△A′BC与△ABC关于BC所在直线对称,
∴A'C=AC=2,∠ACB=∠A'CB,
∵点D,E分别为AB,BC的中点,
∴D、E是△ABC的中位线,
∴DE∥AB,
∴∠BDE=∠MAN=90°,
∴∠BDE=∠A'EF,
∴AB∥A'E,
∴∠ABC=∠A'EB,
∴∠A'BC=∠A'EB,
∴A'B=A'E,
Rt△A'CB中,∵E是斜边BC的中点,
∴BC=2A'E,
由勾股定理得:AB2=BC2﹣AC2,
∴AE′=,
∴AB=;
②当∠A'FE=90°时,如图2,
∵∠ADF=∠A=∠DFC=90°,
∴∠ACF=90°,
∵△A′BC与△ABC关于BC所在直线对称,
∴∠ABC=∠CBA'=45°,
∴△ABC是等腰直角三角形,
∴AB=AC=2;
综上所述,AB的长为或2;
故答案为:或2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于点和,与轴交于点.
(1)求抛物线的表达式;
(2)点是抛物线上第二象限内的点,连接,设的面积为,当取最大值时,求点的坐标;
(3)作射线,将射线绕点顺时针旋转交抛物线于另一点,在射线上是否存在一点,使的周长最小.若存在,求出的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边的边长为,等边的边长为,把放在中,使与重合,点在边上,如图所示,此时点是中点,在内部将按下列方式旋转:绕点顺时针旋转,使点与点重合,完成第次操作,此时点是中点,旋转了__________;再绕点顺时针旋转,使点与点重合,完成第次操作;……这样依次绕的某个顶点连续旋转下去,第次操作完成时,_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,2),B(2,﹣1),C(4,﹣1),且该二次函数的最小值是﹣2.
(1)请在图中描出该函数图象上另外的两个点,并画出图象;
(2)求出该二次函数的解析.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.
(1)在图1中,
①和的位置关系为__________________;
②将剪下后展开,得到的图形是_________________;
(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).
(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)
(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.
(3)当△AFD是轴对称图形时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九“勾股”章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“如图,今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门________步而见木.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);
(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年月日贵州环保行活动“美丽乌江 拒绝污染”正式开启,乌江支流由于长期采磷及磷化工发展造成了总磷污染.当地政府提出五条整改措施,力求在天以内使总磷含量达标(即总磷浓度低于).整改过程中,总磷浓度与时间(天)的变化规律如图所示,其中线段表示前天的变化规律,且线段所在直线的表达式为:,从第天起,该支流总磷浓度与时间成反比例关系.
(1)求整改全过程中总磷浓度与时间的函数表达式;
(2)该支流中总磷的浓度能否在天以内达标?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com