精英家教网 > 初中数学 > 题目详情

【题目】“半角型”问题探究:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BEEFFD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE≌△AFG,从而得出结论:EF=BE+DF

(1)如图2,在四边形ABCD中,AB=AD,∠B +∠D=180°,EF分别是边BCCD上的点,且∠EAF=BAD,上述结论是否仍然成立,并说明理由.

(2)实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?

拓展提高

(3)如图4,边长为5的正方形ABCD中,点EF分别在ABCD上,AE=CF=1,OEF的中点,动点GH分别在边ADBC上,EFGH的交点POF之间(与0、F不重合),且∠GPE=45°,设AG=m,求m的取值范围

【答案】(1)结论EF=BE+DF仍然成立理由见解析(2)此时两舰艇之间的距离是210海里

(3)①<m≤

【解析】(1)延长FD到点G.使DG=BE.连结AG,即可证明ABE≌△ADG,可得AE=AG,再证明AEF≌△AGF,可得EF=FG,即可解题;
(2)连接EF,延长AE、BF相交于点C,然后与(1)同理可证.

(3)分别探讨当PO重合和HC重合时,即可求出m的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】丽水苛公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:

v(千米/小时)

75

80

85

90

95

t(小时)

4.00

3.75

3.53

3.33

3.16


(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市?请说明理由:
(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.

(1)求证:DE⊥BE;

(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OBl为边作第三个正方形OBlB2C2,照此规律作下去,则点B2018的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】司机小李某天下午营运全是在东西走向的大道上行驶,如果规定向东行驶为正,向西行驶为负,这天下午行车里程如下:(单位:千米)

(1)被送到目的地时,小李在出发地的什么位置?

(2若每千米的营运额为8元,则这天下午的营运额为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列各等式:

13=1=×11×22

13+23=9=×22×32

13+23+33=36=×32×42

用你发现的规律解答下列问题:

(1)填空:13+23+33+…+(n﹣1)3+n3=×(   2×(   2(n为正整数);

(2)计算:

13+23+33+…+493+503

23+43+63+…+983+1003

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y= 与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(26)B(54)C(70)O(00)(图上一个单位长度表示10),现在想对这块地皮进行规划,需要确定它的面积.

(1)求这个四边形的面积;

(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在四边形ABCD中,ADBC,AD=24cm,BC=30cm,点P从A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截得两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?

查看答案和解析>>

同步练习册答案