精英家教网 > 初中数学 > 题目详情

【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:

(1)单摆的长度( ≈1.7);
(2)从点A摆动到点B经过的路径长(π≈3.1).

【答案】
(1)

解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,

∵∠EOA=30°、∠FOB=60°,且OC⊥EF,

∴∠AOP=60°、∠BOQ=30°,

设OA=OB=x,

则在Rt△AOP中,OP=OAcos∠AOP= x,

在Rt△BOQ中,OQ=OBcos∠BOQ= x,

由PQ=OQ﹣OP可得 x﹣ x=7,

解得:x=7+7 ≈18.9(cm),

答:单摆的长度约为18.9cm


(2)

解:由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+7

∴∠AOB=90°,

则从点A摆动到点B经过的路径长为 ≈29.295,

答:从点A摆动到点B经过的路径长为29.295cm


【解析】(1)作AP⊥OC、BQ⊥OC,由题意得∠AOP=60°、∠BOQ=30°,设OA=OB=x,根据三角函数得OP=OAcos∠AOP= x、OQ=OBcos∠BOQ= x,由PQ=OQ﹣OP可得关于x的方程,解之可得;(2)由(1)知∠AOB=90°、OA=OB=7+7 ,利用弧长公式求解可得.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图1,在△ABC中,ADBD分别平分∠BAC和∠ABCADBD相交于点D,过点DDEACDFBC分别交AB于点EF.

①若∠EDF=80°,则∠ADB=________°;

②若∠C=则∠ADB=________°.

(2)如图2,在△ABC中,若∠BAD=BAC,∠ABD=ABCADBD相交于点D,过点DDEACDFBC分别交AB于点EF,若∠EDF=60°,则∠ADB=_______°;

(3)如图3,在△ABC中,ADBD分别是∠BAC、∠ABC等分线,ADBD相交于点D,若∠BAD=BAC,∠ABD=ABC,过点DDEACDFBC分别交AB于点EF,若∠EDF=,则∠ADB的度数是多少?(表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,射线平分于点,点边上运动(不与点重合),过点于点.

1)如图1,点在线段上运动时,平分.

①若,则_____;若,则_____

②试探究之间的数量关系?请说明理由;

2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点O.过点CBD的平行线,过点DAC的平行线,两直线相交于点E.

(1)求证:四边形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10.

(1)甲乙两种图书的售价分别为每本多少元?

(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6 米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.

(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:

根据以上信息,请解答下面的问题;

选手

A平均数

中位数

众数

方差

a

8

8

c

7.5

b

69

2.65

1)补全甲选手10次成绩频数分布图.

2a   b   c   

3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°.(tan31°≈0.6,tan50°≈1.2,结果精确到1m)

(1)求B,C的距离.
(2)通过计算,判断此轿车是否超速.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:

(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.

查看答案和解析>>

同步练习册答案