精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的两点,与轴交于点

1)求该反比例函数和一次函数的解析式;

2)直接写出当时,的取值范围;

3)在轴上找一点使最大,求的最大值及点的坐标

【答案】1;(2)当时,;(3PBPC的最大值

【解析】

1)将A点代入反比例函数表达式中即可求反比例函数得解析式,然后求出B的坐标,将A,B代入一次函数表达式中即可求一次函数的解析式;

2)结合图象和两交点即可直接写出当时,的取值范围;

3)当P,B,C在一条直线上时,最大,此时P点为一次函数与y轴的交点,最大距离为BC的长度,再根据B,C两点求BC的长度即可.

1)把代入,可得

∴反比例函数的解析式为

把点代入,可得

代入

可得,解得

∴一次函数的解析式为

2)当时,.

3)一次函数的解析式为,令,则

∴一次函数与轴的交点为

此时,最大,即为所求,

,则

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,以AC为直径作⊙O,点D在⊙O上,BDBCDEAC,垂足为点EDE与⊙OAB分别交于点MF.连接BODOAM

(1)证明:BD是⊙O的切线;

(2)tanAMDAD2,求⊙O的半径长;

(3)(2)的条件下,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°,∠B60°,△ADE可以由△ABC绕点 A顺时针旋转90°得到,点D 与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形 ABCD 内接于⊙O,连接 ACBD,∠BAD+2ACB=180°

1)如图 1,求证:点 A 为弧 BD 的中点;

2)如图 2,点 E 为弦 BD 上一点,延长 BA 至点 F,使得 AF=AB,连接 FE AD 于点 P,过点 P PHAF 于点 HAF=2AH+AP,求证:AH:AB=PE:BE

3)在(2)的条件下,如图 3,连接 AE,并延长 AE 交⊙O 于点 M,连接 CM,并延长 CM AD 的延长线于点 N,连接 FD,∠MND=MEDDF=12sinACBMN=,求 AH 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是关于的函数,若其函数图象经过点,则称点为函数图象上的“郡点”,例如:上存在“郡点”

1)直线___________(填写直线解析式)上的每一个点都是“郡点”,双曲线上的“郡点”是___________

2)若抛物线上有“郡点”,且“郡点”(点和点可以重合)的坐标为,求的最小值.

3)若函数的图象上存在唯一的一个郡点,且当的最小值,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在实际问题中往往需要求得方程的近似解,这个时候,我们通常利用函数的图象来完成.如,求方程x22x20的实数根的近似解,观察函数yx22x2的图象,发现,当自变量为2时,函数值小于0(点(2,﹣2)在x轴下方),当自变量为3时,函数值大于0(点(31)在x轴上方).因为抛物线yx22x2是一条连续不断的曲线,所以抛物线yx22x22x3这一段经过x轴,也就是说,当x23之间的某个值时,函数值为0,即方程x22x2023之间有根.进一步,我们取23的平均数2.5,计算可知,对应的数值为﹣0.75,与自变量为3的函数值异号,所以这个根在2.53之间任意一个数作为近似解,该近似解与真实值的差都不会大于32.50.5.重复以上操作,随着操作次数增加,根的近似值越来越接近真实值.用以上方法求得方程x22x20的小于0的解,并且使得所求的近似解与真实值的差不超过0.3,该近似解为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,弦EFAB于点C,过点FO的切线交AB的延长线于点D

1)已知∠Aα,求∠D的大小(用含α的式子表示);

2)取BE的中点M,连接MF,请补全图形;若∠A30°,MF,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1如图1,网格中每个小正方形的边长为1,点AB均在格点上.则线段AB的长为 .请借助网格,仅用无刻度的直尺在AB上作出点P,使AP.

2)⊙O为△ABC的外接圆,请仅用无刻度的直尺,依下列条件分别在图2,图3的圆中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法,请下结论注明你所画的弦).

①如图2ACBC

②如图3P为圆上一点,直线lOPlBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线yx2+bx+cx轴交于A(﹣10),B20)两点,与y轴交于点C

(1)求该抛物线的解析式及点C的坐标;

(2)直线y=﹣x2与该抛物线在第四象限内交于点D,与x轴交于点F,连接ACCD,线段AC与线段DF交于点G,求证:AGF≌△CGD

(3)直线ymm0)与该抛物线的交点为MN(点M在点N的左侧),点M关于y轴的对称点为点M,点H的坐标为(10),若四边形NHOM的面积为,求点HOM的距离d

查看答案和解析>>

同步练习册答案