【题目】已知是关于的函数,若其函数图象经过点,则称点为函数图象上的“郡点”,例如:上存在“郡点”.
(1)直线___________(填写直线解析式)上的每一个点都是“郡点”,双曲线上的“郡点”是___________;
(2)若抛物线上有“郡点”,且“郡点”、(点和点可以重合)的坐标为、,求的最小值.
(3)若函数的图象上存在唯一的一个“郡点”,且当,的最小值,求的值.
【答案】(1);或;(2);(3)的值为或
【解析】
(1)根据“郡点”的定义得y=x时,图象经过点P(t,t);y==x,函数图象经过点P(t,t),即可求解;
(2)由题意得:y=x,即:y=x2+(a+1)xa2a+2=x,整理得:
x2+axa2a+2=0,由韦达定理,即可求解;
(3)由题意得:y=x2+(nk+1)x+m+k1=x,由题意△=0得:m=(nk)2(k1),分当2≤n=k≤1、当n=k≤2、n=k≥1三种情况,求解即可.
解:(1)由题意得:y=x时,图象经过点P(t,t),
y==x,解得:x=±1,
故答案为:y=x,(1,1)或(1,1);
(2)设二次函数的“郡点”为
∴
∴
∴
∴
又“郡点”、(点和点可以重合)
∴△≥0
∴
∴或
对于
∵a=,对称轴a=-
∴时,
(3)∵只有一个“郡点”
∴与只有一个交点
=x
则方程有两个相同的根,
∴
可得
①当2≤n=k≤1时,n=k时,m取得最小值,
即:(k1)=k,
解得:k=;
②当n=k≤2时,n=2,m取得最小值,
即:(2k)2(k1)=k,
x无解;
③当n=k≥1时,n=1,m取得最小值,
即:(1k)2span>(k1)=k,
解得:k=2±(舍去负值)
故:k的值为:或2+.
科目:初中数学 来源: 题型:
【题目】如图,抛物线l1:y1=a(x+1)2+2与l2:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:
①无论x取何值,y2总是负数;
②l2可由l1向右平移3个单位,再向下平移3个单位得到;
③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;
④四边形AECD为正方形.
其中正确的是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的长、宽各为多少米,设与墙平行的一边长为米.
(1)填空:(用含的代数式表示)另一边长为 米;
(2)列出方程,并求出问题的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 为等腰直角三角形,∠ACB=90°,点 M 为 AB 边的中点,点 N 为射线 AC 上一点,连接 BN,过点 C 作 CD⊥BN 于点 D,连接 MD,作∠BNE=∠BNA,边 EN 交射线 MD 于点 E,若 AB=20,MD=14,则 NE 的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( )
A. 4 B. 3 C. 2 D. 2+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于第一、三象限内的,两点,与轴交于点.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出当时,的取值范围;
(3)在轴上找一点使最大,求的最大值及点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n)
(1)求反比例函数y=的表达式.
(2)若两函数图象的另一交点为B,直接写出B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次三项式﹣x2+2x+3.
(1)关于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;
(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+3的图象与线段AB只有一个交点,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.
(1)求m,n的值及抛物线的解析式;
(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;
(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com