【题目】在直线上取,,三点,使得,,如果点是线段的中点,则线段的长度为______
【答案】或
【解析】
根据题意,分两种情况讨论:
①当点C在线段AB的延长线上时,AC=7,如果点O是线段AC的中点,则线段OCAC,进而求得OB;
②当点C在线段AB上时,AC=1,如果点O是线段AC的中点,则线段OCAC,进而求得OB.
分两种情况讨论:
①当点C在线段AB的延长线上时(如图1),AC=AB+BC=4+3=7(cm).
∵O是线段AC的中点,
∴OCAC=3.5cm,
则OB=OC﹣BC=3.5﹣3=0.5(cm);
②当点C在线段AB上时(如图2),AC=AB﹣BC=4﹣3=1(cm).
∵O是线段AC的中点,
∴OCAC=0.5cm.
则OB=OC+BC=0.5+3=3.5(cm).
综上所述:线段OC的长度为0.5cm或3.5cm.
故答案为:0.5cm或3.5cm.
科目:初中数学 来源: 题型:
【题目】佳佳想探究一元三次方程x3+2x2-x-2=0的解的情况.根据以往的学习经验他想到了方程与函数的关系:一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一次方程kx+b=0(k≠0)的解;二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解.如:二次函数y=x2-2x-3的图象与x轴的交点为(-1,0)和(3,0),交点的横坐标-1和3即为方程x2-2x-3=0的解.
根据以上方程与函数的关系,若知道函数y=x3+2x2-x-2的图象与x轴交点的横坐标,即可知道方程x3+2x2-x-2=0的解.
佳佳为了解函数y=x3+2x2-x-2的图象,通过描点法画出函数的图象:
(1)直接写出m的值________,并画出函数图象;
(2)根据表格和图象可知,方程的解有________个,分别为________________;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx﹣2的图象与反比例函数的图象交于A、B两点,过A作AC⊥x轴于点C.已知cos∠AOC=,OA=.
(1)求反比例函数及直线AB的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.
(1)求甲、乙两种树木各购买了多少棵?
(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长方体长,宽,高.从这个长方体的一个角上挖掉一个棱长的正方体,剩下部分的体积是(______),剩下部分的表面积是(______).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市正在开展“食品安金城市”创建活动,为了调查学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷.将调查结果按照“:正常了解;:了解;:了解较少;:不了解”四类分别进行统计,并绘制了如图所示的两幅统计图(不完整).
请根据图中信息,解答下列问题:
(1)此次共调查了_____名学生;
(2)扇形统计图中所在扇形的圆心角度数为_____度;
(3)将条形统计图补充完整;
(4)若该校共有名学生,请你估计对食品安全知识“非常了解”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于C点,点E在第一象限且四边形ACBE为矩形.
(1)求∠BCE的度数;
(2)如图2,F为线段BC上一动点,P为第四象限内抛物线上一点,连接CP、FP、BP、EF,M,N分别是线段CP,FP的中点,连接MN,当△BCP面积最大,且MN+EF最小时,求PF的长度;
(3)如图3,将△AOC绕点O顺时针旋转一个角度α(0°<α<180°),点A,C的对应点分别为A',C',直线A'C'与x轴交于点G,G在x轴正半轴上且OG=.线段KH在直线A'C'上平移( K在H左边),且KH=5,△KHC是否能成为等腰三角形?若能,请求出所有符合条件的点K的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.
(1)求∠BCD的度数;
(2)将图①中的△BCD绕点B顺时针旋转,得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.
①求∠C′CB的度数;
②求证:△C′BD′≌△CAE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com