精英家教网 > 初中数学 > 题目详情

【题目】如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求弦BD的长;
(3)求图中阴影部分的面积.

【答案】
(1)证明:连接OC,OC交BD于E,

∵∠CDB=30°,

∴∠COB=2∠CDB=60°,

∵∠CDB=∠OBD,

∴CD∥AB,

又∵AC∥BD,

∴四边形ABDC为平行四边形,

∴∠A=∠D=30°,

∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC

又∵OC是⊙O的半径,

∴AC是⊙O的切线


(2)解:由(1)知,OC⊥AC.

∵AC∥BD,

∴OC⊥BD,

∴BE=DE,

∵在直角△BEO中,∠OBD=30°,OB=6,

∴BE=OBcos30°=3

∴BD=2BE=6


(3)解:易证△OEB≌△CED,

∴S阴影=S扇形BOC

∴S阴影= =6π.

答:阴影部分的面积是6π


【解析】(1)连接OC,OC交BD于E,由∠CDB=∠OBD可知,CD∥AB,又AC∥BD,四边形ABDC为平行四边形,则∠A=∠D=30°,由圆周角定理可知∠COB=2∠D=60°,由内角和定理可求∠OCA=90°,证明切线;(2)利用(1)中的切线的性质和垂径定理以及解直角三角形来求BD的长度;(3)证明△OEB≌△CED,将阴影部分面积问题转化为求扇形OBC的面积.
【考点精析】解答此题的关键在于理解垂径定理的推论的相关知识,掌握推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等,以及对切线的判定定理的理解,了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以BC为直径的△ABC的外接圆,OP∥AC,且与BC的垂线交于点P,OP交AB于点D,BC、PA的延长线交于点E.
(1)求证:PA是⊙O的切线;
(2)若sinE= ,PA=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y是x﹣3的正比例函数,且当x=2时,y=﹣3.

(1)求y与x之间的函数关系式;

(2)求当x=1时,y的值;

(3)求当y=﹣12时,x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知可得=______

(2)如图2,在(1)的条件下,如果平分=________

(3)如图3,在(1)(2)的条件下,如果=_________

(4)尝试解决下面问题:如图4,的平分线,的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5x = 4x –7,那么5x– __________= –7,变形依据是 ____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图1,在ABC中,∠ABC=42°,ACB=72°,点DAB上一点,EAC上一点,BECD相交于点F.

(1)若∠ACD=35°,ABE=20°,求∠BFC的度数;

(2)若CD平分∠ACBBE平分∠ABC,求∠BFC的度数;

探究:如图2,在ABC中,BE平分∠ABCCD平分∠ACB写出∠BFC与∠A之间的数量关系,并说明理由

应用:如图3,在ABC中,BD平分∠ABCCD平分外角∠ACE请直接写出∠BDC与∠A之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:

如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD.垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,点B在数轴上分别表示 6.5x.点B在点A的左边,且点A,点B之间有9个整数,则x的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是()

A.相等的角是对顶角

B.在平面内,经过一点有且只有一条直线与已知直线平行

C.两条直线被第三条直线所截,内错角相等

D.在平面内,经过一点有且只有一条直线与已知直线垂直

查看答案和解析>>

同步练习册答案