精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2﹣2x﹣3x轴交于A,B两点(AB的左侧),顶点为C.

(1)A,B两点的坐标;

(2)若将该抛物线向上平移t个单位后,它与x轴恰好只有一个交点,求t的值.

【答案】(1)A(﹣1,0),B(3,0);(2)t=4.

【解析】

(1)通过解方程x2-2x-3=0A点坐标和B点坐标;
(2)利用抛物线的平移规律得到平移后的抛物线解析式为y=x2-2x-3+t,利用判别式的意义得到△=(-2)2-4(-3+t)=0,然后解关于t的方程即可.

解:(1)当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,

所以A点坐标为(﹣1,0),B点坐标为(3,0);

(2)抛物线y=x2﹣2x﹣3向上平移t个单位后所得抛物线解析式为y=x2﹣2x﹣3+t,

则△=(﹣2)2﹣4(﹣3+t)=0,

解得t=4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y1=ax+223y2=x32+1交于点A13),过点Ax轴的平行线,分别交两条抛物线于点BC.则以下结论:

①无论x取何值,y2的值总是正数;

a=1

③当x=0时,y2﹣y1=4

2AB=3AC

其中正确结论是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB经过圆心O,交⊙O于点A、C,点D⊙O上一点,连结AD、OD、BD,∠BAD=∠B=30°.

(1)求证:BD⊙O的切线.

(2)OA=8,求OA、OD围成的扇形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:设一元二次方程(a≠0)的两根为 , 则两根与方程的系数之间有如下关系:.根据该材料完成下列填空:

已知m,n是方程的两根,则

(1)____, mn=____

(2)_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,矩形OABC如图所示放置,点Ax轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.

(1)求此抛物线的解析式(a、b、c可用含n的式子表示);

(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D(x1,y1)、E(x2、y2)(x1<x2,当|x1﹣x2|最小时,求抛物线与直线的交点DE的坐标;

(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点Py轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线CM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个常见铁夹的侧面示意图,OAOB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA15mmDO24mmDC10mm

我们知道铁夹的侧面是轴对称图形,请求出AB两点间的距离。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】手机经销商计划购进苹果手机的 iPhone8 iphone8Plus iphoneX三款手机共60部,每款手机至少要购进10部,且恰好用完购机款360000元.设购进iPhone8手机部,iPhone8Plus手机部.三款手机的进价和售价如表:

手机型号

iPhone8

iphone8Plus

iphoneX

进价(元部)

4600

6100

7600

售价(元部)

5200

6800

8600

1)用含的式子表示购进iphoneX手机的部数.

2)求出之间的函数关系式.

3)假设所购进手机全部售出.

①求出预估利润(元)与(部)的函数关系式.

②求出预估利润的最大值,并写出此时购进三款手机各多少部.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读,再填空解答:

方程的根为

方程的根为.

⑴.方程的根是

⑵.若是关于x的一元二次方程的两个实数根,那么与系数a、b、c的关系是:

⑶.如果是方程的两个根,根据⑵所得的结论,求的值.

查看答案和解析>>

同步练习册答案