精英家教网 > 初中数学 > 题目详情

【题目】如图是一座现代化大型单塔双面扇形斜拉桥,主桥采用独塔双面索斜拉设计,主桥桩呈“H”形,两侧用钢丝绳斜拉固定.

问题提出:

如何测量主桥桩顶端至桥面的距离AD

方案设计:

如图,某数学课题研究小组通过调查研究和实地测量,在桥面B处测得∠ABC=26.57°,再沿BD方向走21米至C处,在C处测得∠ACD=30.96°.

问题解决:

根据上述方案和数据,求银滩黄河大桥主桥桩顶端至桥面的距离AD

(结果精确到1m,参考数据:sin26.57°≈0.447cos26.57°≈0.894tan26.57°≈0.500sin30.96°≈0.514cos30.96°≈0.858tan30.96°≈0.600)

【答案】银滩黄河大桥主桥桩顶端至桥面的距离AD63米.

【解析】

先根据题意得出∠ABD、∠ACD的度数及BC的长,再利用锐角三角函数的定义,在RtABD中用AD表示BD,在RtACD中用AD表示CD,最后由BD-CD=BC列出AD的方程,求得AD便可.

解:根据题意得:

ABD=26.57°,∠ACD=30.96°,BC=21米,

RtABD中,∠ABD=26.57°,

tanABD

BD

RtACD中,∠ACD=30.96°,

tanACD

CD

BDCD=BCBC=21

2AD

AD=63()

答:银滩黄河大桥主桥桩顶端至桥面的距离AD63米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某网店专售一款电动牙刷,其成本为20/支,销售中发现,该商品每天的销售量y(支)与销售单价x(/支)之间存在如图所示的关系.

(1)yx之间的函数关系式.

(2)由于湖北省武汉市爆发了新型冠状病毒肺炎(简称新冠肺炎)疫情,该网店店主决定从每天获得的利润中抽出200元捐献给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定这款电动牙刷的销售单价?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在完善基础设施、改善市容市貌、提升城市品质过程中,2019年我市开展人行道改造工程,需要花岗岩地板砖铺设人行道.现租用甲、乙两种货车运载地板砖,已知一辆甲车每次运载的重量比一辆乙车多2吨,且甲车运载16吨地板砖和乙车运载12吨地板砖所用的车辆数相同.

1)甲、乙两种货车每次运载地板砖各多少吨?

2)现租用甲车a辆、乙车b辆,刚好运载地板砖100吨,且a3b,共有多少种租车方案?

3)在(2)中已知一辆甲车每次的运费是380元,一辆乙车每次的运费是300元,如何租用甲、乙两种车可使得总运费最低?求出最低总运费.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A是直线x=1上一个动点,以A为顶点的抛物线y1=a(x1)2+t和抛物线y2=ax2交于点B(AB不重合,a是常数),直线AB和抛物线y2=ax2交于点BC,直线x=1和抛物线y2=ax2交于点D(如图仅供参考)

(1)求点B的坐标(用含有at的式子表示)

(2)a0,且点A向上移动时,点B也向上移动,求的范围;

(3)BC重合时,求的值;

(4)a0,且△BCD的面积恰好为3a时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如 1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到△ABC 和△ACD.并且量得 AB 4cmAC8cm

操作发现:

1)将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图 2 所示的△ACD,过点 C AC′的平行线,与 DC'的延长线 交于点 E,则四边形 ACEC′的形状是

2)创新小组将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转,使 B AD 三点在同一条直线上,得到如图 3 所示的△ACD,连接 CC',取 CC′的中 F,连接 AF 并延长至点 G,使 FGAF,连接 CGCG,得到四边形 ACGC′, 发现它是正方形,请你证明这个结论.

实践探究:

3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A'点,A'C BC′相交于点 H 如图 4 所示,连接 CC′,试求 tanCCH 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,被一矩形所截,被截成三等分,EHBC,则四边形的面积是的面积的:( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=mx2+(12m)x+13m

(1)m=2时,求二次函数图象的顶点坐标;

(2)已知抛物线与x轴交于不同的点AB

①求m的取值范围;

②若3≤m≤4时,求线段AB的最大值及此时二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个批发商销售成本为20/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

售价x(元/千克)


50

60

70

80


销售量y(千克)


100

90

80

70


1)求yx的函数关系式;

2)该批发商若想获得4000元的利润,应将售价定为多少元?

3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示.已知:洗衣机的排水速度为每分钟20升.

1)求排水时yx之间的函数解析式;

2)洗衣机中的水量到达某一水位后,过13.7分钟又到达该水位,求该水位为多少升.

查看答案和解析>>

同步练习册答案