精英家教网 > 初中数学 > 题目详情

【题目】某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10.

1)设每个定价增加x元,此时的销售量是多少?(用含x的代数式表示)

2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?

3)超市若要获得最大利润,则每个应定价多少元?

【答案】(1)400-10x;(270元;(36250

【解析】

1)根据销售量=400-10x列关系式;(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.

解:(1定价每增加1元,销售量将减少10

∴设每个定价增加x元,此时的销售量是400-10x

2)由题意可得:(50-40+x)(400-10x=6000

整理得:x2-30x+200=0

解得x1=20x2=10

∵使进货量较少

x2=10(舍去),

∴每个定价70元;

3)由题意可知,所获利润y=50-40+x)(400-10x=-10x2+300x+4000

x时,y最大=

所以每个定价为65元时,获得的最大利润为6250元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx22x3x轴交于点A(﹣10),点B30),与y轴交于点C,点D是该抛物线的顶点,连接ADBD

1)直接写出点CD的坐标;

2)求△ABD的面积;

3)点P是抛物线上的一动点,若△ABP的面积是△ABD面积的,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠C90°,ACBC,将△ABC绕点A顺时针方向旋转60°到△ABC的位置,连接C'B

(1)求∠ABC'的度数;

(2)C'B的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.

1)求通道的宽是多少米?

2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形OABC的一边OAx轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,BAN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )

A.2B.C.4D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,对角线ACBD相交于点EAF平分∠BAC,交BD于点F.

(1)求证:EF+AC=AB

(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动。如图2A1F1平分∠BA1C1,交BD于点F1,过点F1F1E1A1C1,垂足为E1,请猜想E1F1A1C1AB三者之间的数量关系,并证明你的猜想;

(3)在(2)的条件下,当A1E1=3C1E1=2时,求BD的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点重合).

(1)当圆心内部,时,________.

(2)当圆心内部,四边形为平行四边形时,求的度数;

(3)当圆心外部,四边形为平行四边形时,请直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程

已知:如图,OO上一点P.

求作:过点PO的切线.

作法:如图,

作射线OP

在直线OP外任取一点A,以点A为圆心,AP为半径作A,与射线OP交于另一点B

连接并延长BAA交于点C

作直线PC

则直线PC即为所求.

根据小元设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明:

证明: BCA的直径,

∴∠BPC=90°(____________)(填推理的依据)

OPPC

OPO的半径,

PCO的切线(____________)(填推理的依据)

查看答案和解析>>

同步练习册答案