精英家教网 > 初中数学 > 题目详情
19.如图,在等边三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
请你按题中给出的辅助线的做法,完成证明过程.
证明:在边AB上截取AD=MD,连接MD.

分析 在AB上截取DA=MC,连接DM,得△ADM,求出∠2=∠1,∠5=∠MCN,根据ASA推出△ADM≌△MCN即可.

解答 证明:在AB上截取DA=MC,连接DM,得△ADM,
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,
∴∠1=∠2.
又∵CN平分∠ACP,∠4=$\frac{1}{2}$∠ACP=60°,
∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,DA=MC,
∴BA-DA=BC-MC,
即BD=BM,
∴△BDM为等边三角形,
∴∠6=60°,
∴∠5=180°-∠6=120°,
∴由①②得∠MCN=∠5.
在△ADM和△MCN中,
$\left\{\begin{array}{l}{∠2=∠1}\\{AD=MC}\\{∠5=∠MCN}\end{array}\right.$,
∴△ADM≌△MCN (ASA),
∴AM=MN.

点评 本题考查了等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出两三角形全等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.-2016的相反数是2016.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.64的立方根是4,$\sqrt{25}$的平方根是±$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB=$\frac{1}{2}$,AB=4,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.同学们,你玩过折纸游戏吗?折纸游戏里还蕴藏着不少数学知识呢!请准备一张长方形纸片,按照小亮的方法折纸,折叠后A′B与E′B在同一直线上,如图所示,则两折痕BC与BD的夹角∠CBD的度数为90°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知,如图△ABC中,AD平分∠BAC,DE=DC,EF∥AB.求证:AC=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-$\frac{2}{3}$).
(1)求抛物线的解析式.
(2)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
(3)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取$\frac{5}{4}$时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,CA=CB,OA=OB,求证:OC⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)用配方法求该抛物线的对称轴以及顶点D坐标;
(3)在抛物线的对称轴上是否存在一动点P,使得△ACP的周长最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.

查看答案和解析>>

同步练习册答案