精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙OAB于点D,切线DEAC于点E

(1)求证:∠A=∠ADE

(2)若AD=16,DE=10,求BC的长.

【答案】(1)见解析;(2)15.

【解析】

(1)只要证明A+B=90°,ADE+B=90°即可解决问题;
(2)首先证明AC=2DE=20,在RtADC中,DC==12,

BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.

(1)证明:连接OD

DE是切线,

∴∠ODE=90°,

∴∠ADE+∠BDO=90°,

∵∠ACB=90°,

∴∠A+∠B=90°,

ODOB

∴∠B=∠BDO

∴∠ADE=∠A

(2)连接CD

∵∠ADE=∠A

AEDE

BC是⊙O的直径,∠ACB=90°,

EC是⊙O的切线,

EDEC

AEEC

DE=10,

AC=2DE=20,

在Rt△ADC中,DC=12,

BDx,在Rt△BDC中,BC2x2+122,在Rt△ABC中,BC2=(x+16)2﹣202

x2+122=(x+16)2﹣202

解得x=9,

BC=15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,BAC=90°AB=AC=1,点DBC上一个动点(不与BC重合),在AC上取E点,使ADE=45度.

1)求证:ABD∽△DCE

2)设BD=xAE=y,求y关于x的函数关系式;

3)当:ADE是等腰三角形时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:

(1)x2=49

(3)2x2+4x-3=0(公式法) (4)(x+8)(x+1)=-12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABC在一条直线上,△ABD△BCE均为等边三角形,连接AECDAE分别交CDBD于点MPCDBE于点Q,连接PQBM,下面结论:

①△ABE≌△DBC②∠DMA=60°③△BPQ为等边三角形;④MB平分∠AMC

其中结论正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+cyx的部分对应值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值yx的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为(  )

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,对称轴是直线x=1,下列结论abc>0;b2﹣4ac<0;a+b+c<0;2a+b=0.其中正确的是(  )

A. ①②③ B. ②④ C. ②③ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把ABC沿着AD方向平移,得到ABC,若两个三角形重叠部分的面积为0.5cm2,则它移动的距离AA等于(  )

A.cmB.cmC.cmcmD. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的顶点为,与轴的一个交点在点(-3, 0)和(-2 ,0)之间,其部分图象如图,则以下结论:①<0;②<0;③=2;④方程有两个相等的实数根,其中正确结论的个数为________个.

查看答案和解析>>

同步练习册答案