精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(2,0),其对称轴是直线x=﹣1,直线y=3恰好经过顶点.有下列判断:①当x<﹣2时,yx增大而减小; ac<0; a﹣b+c<0; ④方程ax2+bx+c=0的两个根是x1=2,x2=﹣4;⑤当m≤3时,方程ax2+bx+c=m有实数根.其中正确的是(  )

A. ①②③ B. ①②④ C. ②④⑤ D. ②③④

【答案】C

【解析】

由抛物线的开口方向判断a0的关系,由抛物线与y轴的交点判断c0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

①由图象知,当x<-2时,yx增大而增大,故错误;

②抛物线开口方向向下,则a<0,

抛物线与y轴交于正半轴,则c>0,

所以ac<0,故正确;

③由题意知,当x=-1时,y=3>0,

所以a-b+c>0,故错误;

④由题意知,抛物线与x轴的另一交点与点(2,0)关于直线x=-1对称,则该抛物线与x轴的另一交点坐标是(-4,0),所以方程ax2+bx+c=0的两个根是x1=2,x2=-4,故正确;

⑤由题意知,当m≤3时,直线y=m与抛物线y=ax2+bx+c(a≠0)有交点,所以,方程ax2+bx+c=m有实数根,故正确.

综上所述,正确的结论是:②④⑤

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数y1=x(x≥0),y2=(x>0)的图象如图所示,下列结论:

①两函数图象的交点坐标为A(2,2);

②当x>2,y2>y1;

③直线x=1分别与两个函数图象相交于B,C两点,则线段BC的长为3;

④当x逐渐增大时,y1的值随x的增大而增大,y2的值随x的增大而减少,其中正确的是(  )

A. ①② B. ①③ C. ②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是平面直角坐标中的一点,点轴负半轴上一动点,联结,并以为边在轴上方作矩形,且满足,设点的横坐标是,如果用含的代数式表示点的坐标,那么点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ab>0;a+3b+9c>0;4a+b=0;④当y=﹣2时,x的值只能为0;3b﹣c<0,其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在斜坡的顶部有一铁塔AB,BCD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m1m,那么塔高AB为(  )

A. 24m B. 22m C. 20m D. 18m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着航母编队的成立,我国海军日益强大,2018412日,中央军委在南海海域降重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是双曲线与直线的两个交点,都垂直于轴,垂足为,那么四边形的面积是( )

A. 3 B. 6 C. 9 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学实践活动小组借助载有测角仪的无人机测量象山岚光阁与文明湖湖心亭之间的距离.如图,无人机所在位置P与岚光阁阁顶A、湖心亭B在同一铅垂面内,PB的垂直距离为300米,AB的垂直距离为150米,在P处测得A、B两点的俯角分别为α、β,且tanα=,tanβ=﹣1,试求岚光阁与湖心亭之间的距离AB.(计算结果若含有根号,请保留根号)

查看答案和解析>>

同步练习册答案