【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ab>0;②a+3b+9c>0;③4a+b=0;④当y=﹣2时,x的值只能为0;⑤3b﹣c<0,其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】
由抛物线的开口向上得到a>0,由与y轴的交点为(0,-2)得到c=-2,而对称轴为x=-=2,得b=4a,进一步得到b<0,由此判定①错误;由b=-4a,c=-2,代入a+3b+9c得到a+3b+9c=a+3×(-4a)+9c=-11a-18<0,由此判定②错误;由b=-4a得到4a+b=0,由此确定判定③正确;
点(0,-2)和(4,-2)关于对称轴x=2对称,故当y=-2时,x的值为0和4,由此判定④错误;当x=-1时,y=a-b+c=0,由b=-4a,代入得到c=-5a,则3b-c=-12a+5a=-7a<0,由此判定⑤正确.
由图象可得,a>0,b<0,
∴ab<0,故①错误,
∵-==2,c=-2,
∴b=-4a,c=-2,
∴a+3b+9c=a+3×(-4a)+9c=-11a-18<0,故②错误;
∴b=-4a,
∴4a+b=0,故③正确;
∵对称轴为x=2,
∴点(0,-2)和(4,-2)关于对称轴x=2对称,
∴当y=-2时,x的值为0和4,故④错误;
当x=-1时,y=a-b+c=0,
∵b=-4a,
∴a+4a+c=0,
∴c=-5a,
∴3b-c=-12a+5a=-7a<0,故⑤正确.
综上,可得正确结论的个数是2个:③⑤.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为( )
A. 20米 B. 米 C. 米 D. 米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点F,若FA=FC.
(1)求证:四边形ADCE是平行四边形;
(2)若AE⊥EC,EF=EC=5,求四边形ADCE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(2,0),其对称轴是直线x=﹣1,直线y=3恰好经过顶点.有下列判断:①当x<﹣2时,y随x增大而减小; ②ac<0; ③a﹣b+c<0; ④方程ax2+bx+c=0的两个根是x1=2,x2=﹣4;⑤当m≤3时,方程ax2+bx+c=m有实数根.其中正确的是( )
A. ①②③ B. ①②④ C. ②④⑤ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知楼高米,从楼顶处测得对面小平房的俯角为,又乘电梯到离地米的一窗户处测得小平房顶的仰角为,则小平房到大楼的距离为________米.(结果保留根号形式)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店将每件进价为元的某种商品每件元出售,一天可销出约件.该店想通过降低售价,增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低元,其销售量可增加件,将这种商品的售价降低元时,则销售利润________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com