【题目】如(图1),在平面直角坐标系中,,,,且满足,线段交轴于点.
(1)填空: , ;
(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;
(3)求点的坐标;
(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.
【答案】(1)-3,3;(2)45°;(3)(0,);(4)存在,Q点坐标为(0,5)或(0,2);
【解析】
(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;
(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=∠FAO=25°,∠NDM=∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°∠DNM-∠NDM=45°;
(3)①连结OB,如图3,设F(0,t),根据△AOF的面积+△BOF的面积=△AOB的面积得到×3×t+×t×3=×3×3,解得t=,则可得到F点坐标为(0,);
(4)先计算△ABC的面积=,利用△ABQ的三角形=△AQF的面积+△BQF的面积得到|y|3+|y|3=,解出y即可.
解:(1)∵(a+b)2+|b-a-6|=0,
∴a+b=0,b-a-6=0,
∴a=3,b=3,
故答案为:-3,3;
(2)∵AB∥DE,
∴∠ODE+∠DFB=180°,
∵,
∴∠DFB=∠AFO=180°-140°=40°,
∴∠FAO=50°,
∵分别平分,
∴∠OAN=∠FAO=25°,∠NDM=∠ODE=70°,
∴∠DNM=∠ANO=90°-25°=65°,
∴∠AMD=180°∠DNM-∠NDM=45°;
(3)连结OB,如图,
设F(0,t),
∵△AOF的面积+△BOF的面积=△AOB的面积,
∴×3×t+×t×3=×3×3,解得t=,
∴F点坐标为(0,);
(4)存在,
∵,
∴△的面积=,
设Q(0,y),
∵△ABQ的三角形=△AQF的面积+△BQF的面积,
∴|y|3+|y|3=,
解得y=5或y=2,
∴此时Q点坐标为(0,5)或(0,2);
科目:初中数学 来源: 题型:
【题目】如图1是一个长为、宽为的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形.
图2中的阴影部分的正方形的边长是 .
请用两种不同的方法表示图2中阴影部分的面积,并写出下列三个代数式:之间的等量关系;
利用中的结论计算:,求的值;
根据中的结论,直接写出和之间的关系;若,分别求出和的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB是⊙O的直径,AB=10, = = ,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,,.根据这个规律探索可得,第110个点的坐标为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.
(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2 ,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.
(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;
(2)求证:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在全民读书月活动中,某校随机调查了40名同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题,直接写出结果.
(1)这次调查获取的样本数据的众数是 .
(2)这次调查获取的样本数据的中位数是 .
(3)若该校共有1200名学生,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com