精英家教网 > 初中数学 > 题目详情
4.抛物线y=-2x2+8x-6.
(1)用配方法求顶点坐标,对称轴;
(2)x取何值时,y随x的增大而减小?

分析 (1)利用配方法将抛物线解析式边形为y=-2(x-2)2+2,由此即可得出抛物线的顶点坐标以及抛物线的对称轴;
(2)由a=-2<0利用二次函数的性质即可得出:当x≥2时,y随x的增大而减小,此题得解.

解答 解:(1)∵y=-2x2+8x-6=-2(x2-4x)-6=-2(x2-4x+4)+8-6=-2(x-2)2+2,
∴该抛物线的顶点坐标为(2,2),对称轴为直线x=2.
(2)∵a=-2<0,
∴当x≥2时,y随x的增大而减小.

点评 本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数解析式的一般式换算成顶点式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,若有理数a、b在数轴上的对应点的位置如图所示,则下列各式错误的是(  )
A.$\frac{|a|}{a}$+$\frac{|b|}{b}$=0B.a+b<0C.|a+b|-a=bD.-b<a<-a<b

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在直角△ABC中,斜边AB上的垂直平分线交直角边BC于D,交AB于E,若BC=10cm,AC=6cm,则△ADC的周长为16cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当△PNM停止平移时,点Q也停止移动,如图②.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:

(1)当t为何值时,PQ∥AB?
(2)当t=3时,求△QMC的面积;
(3)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.直线a上有一点A,直线b上有一点B,且a∥b.点P在直线a,b之间,若PA=3,PB=4,则直线a、b之间的距离(  )
A.等于7B.小于7C.不小于7D.不大于7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阳光下,小亮测量“望月阁”的高AB.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线BM上点C处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如图表:
分数段频数频率
50≤x≤60200.10
60≤x≤7028b
70≤x≤80540.27
80≤x≤90a0.20
90≤x≤100240.12
100≤x≤110180.09
110≤x≤120160.08
(1)表中a和b所表示的数分别为:a=40,b=0.14;
(2)请在图中补全额数分布直方图;
(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求$\frac{|a+b|}{{m}^{2}+2}$+4m-3cd的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为51.

查看答案和解析>>

同步练习册答案