如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为 .
![]()
(2
,0)或(﹣2
,0)
【解析】先根据题意画出图形,当点M在原点右边时,过点M作MN⊥AB,得出AN2+MN2=AM2,再根据△ABM为等腰直角三角形,得出AN=MN,根据AM=2,求出MN=
,最后根据直线l与x轴正半轴的夹角为30°,求出OM=2
,即可得出点M的坐标,当点M在原点左边时,根据点M′与点M关于原点对称,即可得出点M′的坐标.
解;如图;当点M在原点右边时,
过点M作MN⊥AB,垂足为N,
![]()
则AN2+MN2=AM2,
∵△ABM为等腰直角三角形,
∴AN=MN,
∴2MN2=AM2,
∵AM=2,
∴2MN2=22,
∴MN=
,
∵直线l与x轴正半轴的夹角为30°,
∴OM=2
,
∴点M的坐标为(2
,0),
当点M在原点左边时,
则点M′与点M关于原点对称,
此时点M′的坐标为(﹣2
,0),
故答案为;(2
,0)或(﹣2
,0).
科目:初中数学 来源:2014中考名师推荐数学圆(解析版) 题型:填空题
如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为
上两点,且∠MEB=∠NFB=60°,则EM+FN= .
![]()
查看答案和解析>>
科目:初中数学 来源:2014中考名师推荐数学图形的对称、平移与旋转(解析版) 题型:解答题
如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.
![]()
查看答案和解析>>
科目:初中数学 来源:2014中考名师推荐数学四边形综合练习(解析版) 题型:解答题
如图①,在平行四边形ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).
(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.
(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.
(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2014中考名师推荐数学反比例函数(解析版) 题型:选择题
如图,点B在反比例函数y=
(x>0)的图象上,横坐标为1,过点B分别向x轴,y轴作垂线,垂足分别为A,C,则矩形OABC的面积为( )
![]()
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源:2014中考名师推荐数学分式(解析版) 题型:解答题
请写出一个同时满足下列条件的分式:
(1)分式的值不可能为0;
(2)分式有意义时,的取值范围是x≠±2;
(3)当x=0时,分式的值为-1.
你所写的分式为 .
查看答案和解析>>
科目:初中数学 来源:2014中考名师推荐数学二次函数(解析版) 题型:选择题
如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源:2014中考名师推荐数学三角形(一)(解析版) 题型:选择题
有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com