【题目】如图所示,已知矩形ABCD,AB=4,AD=3,点E为边DC上不与端点重合的一个动点,连接BE,将BCE沿BE翻折得到BEF,连接AF并延长交CD于点G,则线段CG的最大值是( )
A.1B.1.5C.4-D.4-
【答案】D
【解析】
由图可知:DG最小时CG最大,故当∠GAD最小(∠GAB最大)时,CG取最大值,由F在以B为圆心,BC为半径的圆上得到AF⊥BF,此时点G、E重合,证明△ABF≌△AED,得到AE=AB=4,再利用勾股定理求出DE即可得到CG的最大值.
由图可知:DG最小时CG最大,故当∠GAD最小(∠GAB最大)时,CG取最大值,
∵F在以B为圆心,BC为半径的圆上,
∴AF与圆相切时,∠GAB最大,
即AF⊥BF,此时点G、E重合,
∵AB∥CD,
∴∠BAF=∠AED,
∵∠AFB=∠D=90°,BF=BC=AD,
∴△ABF≌△AED,
∴AE=AB=4,
∴DE=,
∴CE=CG=,
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,分别过第二象限内的点作,轴的平行线,与,轴分别交于点,,与双曲线分别交于点,.
下面三个结论,
①存在无数个点使;
②存在无数个点使;
③存在无数个点使.
所有正确结论的序号是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂制作两种手工艺品,每天每件获利比多105元,获利30元的与获利240元的数量相等.
(1)制作一件和一件分别获利多少元?
(2)工厂安排65人制作,两种手工艺品,每人每天制作2件或1件.现在在不增加工人的情况下,增加制作.已知每人每天可制作1件(每人每天只能制作一种手工艺品),要求每天制作,两种手工艺品的数量相等.设每天安排人制作,人制作,写出与之间的函数关系式.
(3)在(1)(2)的条件下,每天制作不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知每件获利30元,求每天制作三种手工艺品可获得的总利润(元)的最大值及相应的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是小安填写的数学实践活动报告的部分内容
题 目 | 测量铁塔顶端到地面的高度 | |
测量目标示意图 | ||
相关数据 | CD=20m,ɑ=45°,β=52° |
求铁塔的高度FE(结果精确到1米)(参考数据:sin52°≈0.79, cos52°≈0.62,tan52°≈1.28)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=-x2+(n-1)x+3的图像与y轴交于点A,与x轴的负半轴交于点B(-2,0)
(1)求二次函数的解析式;
(2)点P是这个二次函数图像在第二象限内的一线,过点P作y轴的垂线与线段AB交于点C,求线段PC长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】游泳池换水清洗的整个过程为“排水-清洗-注水”.一个长方体的游泳池在一次换水清洗的过程中,排水速度是注水速度的2倍,清洗的时间为,这次换水清洗过程中游泳池水量与时间之间的函数图像如图所示.
(1)这次换水清洗的过程中排水的速度为 .
(2)求“注水”过程中与之间的函数关系式,并写出自变量的取值范围.
(3)在该游泳池换水清洗的整个过程中,当池水的水位高度恰好是注满水的池中水位高度的时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形中,.点从点出发,沿方向匀速运动,速度为同时,点从点出发,沿方向匀速运动,速度为.过点作交于点,连接,交于点.设运动时间为.解答下列问题:
(1)当为何值时,?
(2)设五边形的面积为, 求与的函数关系式;
(3)连接.是否存在某一时刻, 使点在的垂直平分线上,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com