精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,一次函数ykx+bkb为常数且k0)的图象与x轴、y轴分别交于AB两点,且与反比例函数ym为常数且m0)的图象在第二象限交于点C.若CDx轴于D,若OAOD2cosBAO

1)求一次函数与反比例函数的解析式.

2)若一次函数与反比例函数的另一个交点坐标为E,连接OCOE,求△COE面积.

【答案】(1)y=-y=﹣x+3(2)9

【解析】

1)根据OAOD2cosBAO 和勾股定理,求得C(﹣26),把C(﹣26)代入反比例函数y,可得反比例函数的解析式,把C(﹣26),A20)代入一次函数ykx+b,即可得一次函数解析式;

2)先求得一次函数与y轴的B的坐标,再根据反比例函数的解析式和一次函数解析式求出交点E的坐标,再根据SCOESCOB+SEOB进行计算即可.

1)在RtACD中,

OAOD2cosBAO=

AC2AD4

RtACD中,CD6

C(﹣26),

C(﹣26)代入反比例函数y,可得

m=﹣12

∴反比例函数的解析式为y=﹣

C(﹣26),A20)代入一次函数ykx+b

可得,解得

∴一次函数解析式为y=﹣x+3

2y=﹣x+3中,令x0,则y3,即B03),

解方程组,可得

E4,﹣3),

SCOESCOB+SEOB

×3×(2+4

9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,平行四边形的顶点在反比例函数)的图象上,点轴上,对角线轴,若两点的横坐标分别为12的长为,则的值为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根

(1)求线段BC的长度;

(2)试问:直线AC与直线AB是否垂直?请说明理由;

(3)若点D在直线AC上,且DB=DC,求点D的坐标;

(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF4,则下列结论:①=;②SBCE36;③SABE12;④△AEF∽△ACD,其中正确结论是_________.(把正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣x2+bx+cy轴于点A(0,4),交x轴于点B(4,0),P是抛物线上一动点,过点Px轴的垂线PQ,过点AAQPQ于点Q,连接AP.

(1)填空:抛物线的解析式为   ,点C的坐标   

(2)点P在抛物线上运动,若AQP∽△AOC,求点P的坐标;

(3)如图2,当点P位于抛物线的对称轴的右侧,若将APQ沿AP对折,点Q的对应点为点Q',请直接写出当点Q'落在坐标轴上时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EABCD的边CD的中点,延长AEBC的延长线于点F.

(1)求证:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点EF分别在正方形ABCD的边BCCD上,∠EAF=45°试判断BEEFFD之间的数量关系.

【发现证明】小聪把ABE绕点A逆时针旋转90°ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.

【类比引申】如图(2),四边形ABCD中,∠BAD≠90°AB=ADB+D=180°,点EF分别在边BCCD上,则当∠EAF与∠BAD满足  关系时,仍有EF=BE+FD请证明你的结论.

【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°ADC=120°BAD=150°,道路BCCD上分别有景点EF,且AEADDF=401米,现要在EF之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41 =1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,有一RtABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知A1AC1是由ABC旋转得到的.

(1)请写出旋转中心的坐标是   ,旋转角是   度;

(2)以(1)中的旋转中心为中心,分别画出A1AC1顺时针旋转90°、180°的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;

             视图       视图

(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)

查看答案和解析>>

同步练习册答案