精英家教网 > 初中数学 > 题目详情

【题目】如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是

【答案】(2,2
【解析】解:过点C作CD⊥OA于点D,
∵△OAB是等边三角形,
∴∠AOB=60°,
∴∠OCD=30°,
设OD=x,则OC=2OD=2x,
∴CD= = x,
∴点C的坐标为:(x, x),
∵双曲线y= 在第一象限内的图象经过OB边上的点C,
x=
解得:x=±1(负值舍去),
∴点C(1, ).
则B的坐标是(2,2
故答案是:(2,2 ).
【考点精析】本题主要考查了等边三角形的性质的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.
训练后篮球定点投篮测试进球统计表

进球数(个)

8

7

6

5

4

3

人数

2

1

4

7

8

2

请你根据图表中的信息回答下列问题:

(1)训练后篮球定时定点投篮人均进球数为 个;
(2)选择长跑训练的人数占全班人数的百分比是 ,该班共有同学 人;
(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).

(1)求抛物线的解析式;
(2)求点O到直线AB的距离;
(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣2bx+c
(1)若抛物线的顶点坐标为(2,﹣3),求b,c的值;
(2)若b+c=0,是否存在实数x,使得相应的y的值为1,请说明理由;
(3)若c=b+2且抛物线在﹣2≤x≤2上的最小值是﹣3,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿BD对折,点A落在E处,BECD相交于F,若AD=3BD=6

1)求证:△EDF≌△CBF

2)求∠EBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,给出下列四个条件,AB=DEBC=EFB=EC=F,从中任选三个条件能使ABCDEF的共有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.
(1)求证:BE=CE;
(2)若BD=2,BE=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).

(1)当点C落在边EF上时,x=cm;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分别为E,F,若∠EDF=50°,则∠C的度数为(
A.40°
B.50°
C.65°
D.130°

查看答案和解析>>

同步练习册答案