【题目】如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.
(1)求证:DF是⊙O的切线;
(2)求证:OC2=OEOP;
(3)求线段EG的长.
【答案】(1)证明见解析;(2)证明见解析;(3)
【解析】
(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;
(2)证明△ODE∽△OPD,得出OD2=OEOP,由OC=OD,即可得出OC2=OEOP;
(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.
(1)证明:连接OD,如图1所示:
∵OA=OD,
∴∠DAB=∠ADO,
∵∠DAF=∠DAB,
∴∠ADO=∠DAF,
∴OD∥AF,
又∵DF⊥AF,
∴DF⊥OD,
∴DF是⊙O的切线;
(2)证明:由(1)得:PF⊥OD,
∴∠ODP=90°,
∵AB⊥CD,
∴∠OED=90°
∴∠ODP=∠OED
又∠DOE=∠POD
∴△ODE∽△OPD,
∴,即OD2=OEOP,
∵OC=OD,
∴OC2=OEOP;
(3)连接DG,如图2所示:
∵AB⊥CD,
∴DE=CE=4,
∴CD=DE+CE=8,
设OD=OA=x,则OE=8﹣x,
在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,
即(8﹣x)2+42=x2,
解得:x=5,
∴CG=2OA=10,
∵CG是⊙O的直径,
∴∠CDG=90°,
∴DG===6,
∴EG===2.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点F是AC边上的中点,DC⊥BC,与BF的延长线交于点D,AE平分∠BAC交BF于点E.
(1)求证:AE∥DC;
(2)若BD=8,求AD的长;
(3)若∠BAC=30°,AC=12,点P是射线CD上一点,求CP+AP的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,E是AB边上一点,D是AC边上一点,且点D不与A、C重合,ED⊥AC.
(1)当sinB=时,
①求证:BE=2CD.
②当△ADE绕点A旋转到如图2的位置时(45°<∠CAD<90°).BE=2CD是否成立?若成立,请给出证明;若不成立.请说明理由.
(2)当sinB=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,求线段CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以边AB为直径的⊙O交边BC于点D,交边AC于点E.过D点作DF⊥AC于点F.
(1)求证:DF是⊙O的切线;
(2)求证:CF=EF;
(3)延长FD交边AB的延长线于点G,若EF=3,BG=9时,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与顶点为的抛物线的交点在轴上,交点在轴上.
(1)求抛物线的解析式.
(2)是否为直角三角形,请说明理由.
(3)在第二象限的抛物线上,是否存在异于顶点的点,使与的面积相等?若存在,求出符合条件的点坐标.若不存在,请说明理由.
(4)在第三象限的抛物线上求出点,使.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】央视“经典咏流传”开播以来受到社会广泛关注,我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图,请你根据统计图所提供的信息解答下列问题:
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”
(1)被调查的总人数是________人,扇形统计图中C部分所对应的扇形圆心角的度数为______;
(2)补全条形统计图;
(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中D类有______人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“.非常了解”、“.了解”、“.基本了解”、“.不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2),请根据图中的信息解答下列问题.
(1)这次调查的市民人数为 人,图2中, ;
(2)补全图1中的条形统计图;
(3)在图2中的扇形统计图中,求“.基本了解”所在扇形的圆心角度数;
(4)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“.不太了解”的市民约有多少万人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com