精英家教网 > 初中数学 > 题目详情
3.如图,△ABC是由四个形状、大小完全一样的三角形拼成,则可以看着是由△ADE平移得到的小三角形是△DBF或△EFC.

分析 根据平移的性质,结合图形直接求得结果.

解答 解:由△ADE平移得到的小三角形是△DBF或△EFC,
故答案为:△DBF或△EFC.

点评 本题主要考查了平移的性质,要注意平移不改变图形的形状、大小和方向,注意结合图形解题的思想,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.等腰三角形的一个角是90°,则它的底角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证∠BDE=∠C.
证明:∵AD⊥BC,FG⊥BC (已知),
∴∠ADC=∠FGC=90°垂直的定义.
∴AD∥FG同位角相等,两直线平行.
∴∠1=∠3两直线平行,同位角相等
又∵∠1=∠2,(已知),
∴∠3=∠2等量代换.
∴ED∥AC内错角相等,两直线平行.
∴∠BDE=∠C两直线平行,同位角相等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=ax2+bx+4与x轴交于A(-2,0),D两点,与y轴交于点C,对称轴x=3交x轴交于点B.
(1)求抛物线的解析式.
(2)点M是x轴上方抛物线上一动点,过点M作MN⊥x轴于点N,交直线BC于点E.设点M的横坐标为m,用含m的代数式表示线段ME的长,并求出线段ME长的最大值.
(3)若点P在y轴的正半轴上,连接PA,过点P作PA垂线,交抛物线的对称轴于点Q.是否存在点P,使以点P、A、Q为顶点的三角形与△BAQ全等?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.[问题提出]:如图1,由n×n×n(长×宽×高)个小立方块组成的正方体中,到底有多少个长方体(包括正方体)呢?

[问题探究]:我们先从较为简单的情形入手.
(1)如图2,由2×1×1个小立方块组成的长方体中,长共有1+2=$\frac{2×3}{2}$=3条线段,宽和高分别只有1条线段,所以图中共有3×1×1=3个长方体.
(2)如图3,由2×2×1个小立方块组成的长方体中,长和宽分别有1+2=$\frac{2×3}{2}$=3条线段,高有1条线段,所以图中共有3×3×1=9个长方体.
(3)如图4,由2×2×2个小立方体组成的正方体中,长、宽、高分别有1+2=$\frac{2×3}{2}$=3条线段,所以图中共有27个长方体.
(4)由2×3×6个小立方块组成的长方体中,长共有1+2=$\frac{3×2}{2}$=3条线段,宽共有6条线段,高共有21条线段,所以图中共有63个长方体.
[问题解决]
(5)由n×n×n个小立方块组成的正方体中,长、宽、高各有$\frac{n(n+1)}{2}$线段,所以图中共有$\frac{{n}^{3}(n+1)^{3}}{8}$个长方体.
[结论应用]
(6)如果由若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知正六边形ABCDEF的边心距为$\sqrt{3}$cm,则正六边形的半径为(  )cm.
A.2$\sqrt{3}$B.2C.$\sqrt{3}$D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知一个正数的两个平方根分别是3a+2和a+14,求这个数的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知直线y=2x-1.
(1)求它关于x轴对称的直线所对应的函数表达式;
(2)将直线y=2x-1向左平移3个单位,求平移后所得直线所对应函数表达式;
(3)将直线y=2x-1绕原点顺时针旋转90°,求旋转后所直线所对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A点出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.
(1)从运动开始,经过多少时间点P、Q、C、D为边得四边形是平行四边形?
(2)从运动开始,经过多少时间点A、B、Q、P为边得四边形是矩形?

查看答案和解析>>

同步练习册答案