【题目】如图,矩形ABCD的对角线AC,BD相交于点O,AB∶BC=3∶2,过点B作BE∥AC,过点C作CE∥DB,BE,CE交于点E,连接DE,则tan∠EDC等于()
A.B.C.D.
【答案】A
【解析】
如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=AD=BC,CF=OE=AB.所以由锐角三角函数定义作答即可.
解:∵矩形ABCD的对角线AC、BD相交于点O,AB:BC=3:2,
∴设AB=3x,BC=2x.
如图,过点E作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.
∵BE∥AC,CE∥BD,
∴四边形BOCE是平行四边形,
∵四边形ABCD是矩形,
∴OB=OC,
∴四边形BOCE是菱形.
∴OE与BC垂直平分,
∴EF=AD=BC=x,OE∥AB,
∴四边形AOEB是平行四边形,
∴OE=AB,
∴CF=OE=AB=x.
∴tan∠EDC=
故选:A.
科目:初中数学 来源: 题型:
【题目】菱形ABCD中,AB=8,∠B=120°,沿过菱形不同的顶点裁剪两次,再将所裁下的图形拼接,若恰好能无缝,无重叠的拼接成一个矩形,则所得矩形的对角线长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,点O为AB上一点,以O为圆心,AO为半径的圆经过点D.
(1)求证:BC与⊙O相切;
(2)若BD=AD=,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为□ABCD的对称中心,点A的坐标为(-2,-2),AB=5,AB//x轴,反比例函数y=的图象经过点D,将□ABCD沿y轴向下平移,使点C的对应点C′落在反比例函数的图象上,则平移过程中线段AC扫过的面积为( )
A.10B.18C.20D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是边长为6的等边△ABC的外接圆,点D,E分别是BC,AC上两点,且BD=CE,连接AD,BE相交于点P,延长线段BE交⊙O于点F,连接CF.
(1)求证:AD∥FC;
(2)连接PC,当△PEC为直角三角形时,求tan∠ACF的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com