精英家教网 > 初中数学 > 题目详情

【题目】如图,点 A,B,C 的坐标分别是(2,1),(6,1),(35),若△A1B1C1 与△ABC 关于x 轴对称

1)在平面直角坐标系中画出△A1B1C1,并写出 A1,B1,C1 三个点的坐标

2)求出△A1B1C1的面积

【答案】1)作图见解析;A1(2,-1),B1(6,-1),C1(3,-5)

28

【解析】

1)依据平面直角坐标系点关于x轴的对称作出A1,B1,C1,顺次连接即可得△A1B1C1,并写出A1,B1,C1的坐标;

2)按照三角形的面积公式进行计算即可的答案.

解(1)如图所示:△A1B1C1为所求;A1(2,-1),B1(6,-1),C1(3,-5)

(2)A1(2,-1),B1(6,-1),C1(3,-5)

A1B1=6-2=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题情境:如图①,在直角三角形ABC中,∠BAC=90,ADBC于点D,可知:∠BAD=∠C(不需要证明);

(1)特例探究:如图②,∠MAN=90,射线AE在这个角的内部,点B.C在∠MAN的边AMAN上,且AB=AC,CFAE于点F,BDAE于点D.证明:△ABD≌△CAF

(2)归纳证明:如图③,点B,C在∠MAN的边AMAN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF

(3)拓展应用:如图④,在△ABC中,AB=ACAB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,∠A38°DE分别为ABAC上一点,将BCDADE沿CDDE翻折,点AB恰好重合于点P处,则∠ACP_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,ABC的顶点都在格点上,请解答下列问题

1)画出将ABC向左平移4个单位长度后得到的图形A1B1C1,并写出点C1的坐标;

2)画出将ABC关于原点O对称的图形A2B2C2,并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某庄有甲、乙两家草莓采摘园的草莓销售价格相同,春节期间,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为(千克),在甲园所需总费用为(元),在乙园所需总费用为(元),之间的函数关系如图所示.

1)甲采摘园的门票是_____,两个采摘园优惠前的草莓单价是每千克____

2)当时,求的函数表达式;

3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的面积为3BDDC21EAC的中点,ADBE相交于点P,那么四边形PDCE的面积为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,请回答下列问题

材料一:我国古代数学家秦九韶在《数书九章》中记述了三斜求积术,即已知三角形的三边长,求它的面积.用现代式子表示即为:S①(其中abc为三角形的三边长,S为面积)而另一个文明古国古希腊也有求三角形面积的海伦公式S……②(其中p

材料二:对于平方差公式:a2b2=(a+b)(ab

公式逆用可得:(a+b)(ab)=a2b2

例:a2﹣(b+c2=(a+b+c)(abc

1)若已知三角形的三边长分别为345,请试分别运用公式①和公式②,计算该三角形的面积;

2)你能否由公式①推导出公式②?请试试.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=x2+bx+3的图象与x轴正半轴交于B、C两点,BC=2,则b的值为( )

A.4 B.﹣4 C.±4 D.﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-10),(30).对于下列命题:①b-2a=0abc0a-2b+4c08a+c0.其中正确的有____________

查看答案和解析>>

同步练习册答案