精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.

【答案】3

【解析】

Aab),则ab=,分别过ACAEx轴于ECFx轴于F,根据相似三角形的判定证得AOE∽△COF,由相似三角形的性质得到OF=CF=,则k=-OFCF=-3

A(a,b)
OE=aAE=b
∵在反比例函数y=图象上,
ab=
分别过ACAEx轴于ECFx轴于F


∵矩形AOCB
∴∠AOE+COF=90°
∴∠OAE=COF=90°AOE
∴△AOE∽△OCF
OC=OA
===
OF=AE=b,CF=OE=a
C在反比例函数y=的图象上,且点C在第四象限,
k=OFCF=ba=3ab=3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B30°∠C50°AE∠BAC的平分线,AD是高.

(1)∠BAE的度数;

(2)∠EAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移4个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).

1)在图中画出平移后的△A1B1C1

2)直接写出△A1B1C1.各顶点的坐标:A1____B1____C1____

3)求出△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用因式分解法解下列方程:

(1)(4x﹣1)(5x+7)=0.

(2)3x(x﹣1)=2﹣2x.

(3)(2x+3)2=4(2x+3).

(4)2(x﹣3)2=x2﹣9.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.

(1)求抛物线的解析式;

(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数和反比例函数的图象都经过点 A33).

1)求正比例函数和反比例函数的解析式;

2)把直线 OA 向下平移后得到直线 l,与反比例函数的图象交于点 B6m),求 m 的值和直线 l 的解 析式;

3)在(2)中的直线 lx 轴、y 轴分别交于 CD,求四边形 OABC 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

40

50

60

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),求Wx之间的函数表达式(利润=收入成本);

(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1234,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字123(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.

1)用树状图或列表法求出小颖参加比赛的概率;

2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t()之间的关系(即前t个月的利润总和st之间的关系).

根据图象提供的信息,解答下列问题:

(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t()之间的函数关系式;

(2)求截止到几月末公司累积利润可达到30万元;

(3)求第8个月公司所获利润为多少万元?

查看答案和解析>>

同步练习册答案