【题目】如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
【答案】(1)y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)存在.P(,).
(3)Q点坐标为(0,)或(0,-)或(0,1)或(0,3).
【解析】
试题分析:(1)由待定系数法确定函数解析式;
(2)先确定出点C坐标,再由△POB≌△POC建立方程,求解即可,
(3)分三种情况计算,分别判断△DAQ1∽△DOB,△BOQ2∽△DOB,△BOQ3∽△Q3EA,列出比例式建立方程求解即可.
试题解析:(1)把A(1,4)代入y=kx+6,
∴k=﹣2,
∴y=﹣2x+6,
由y=﹣2x+6=0,得x=3
∴B(3,0).
∵A为顶点
∴设抛物线的解析为y=a(x﹣1)2+4,
∴a=﹣1,
∴y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)存在.
当x=0时y=﹣x2+2x+3=3,
∴C(0,3)
∵OB=OC=3,OP=OP,
∴当∠POB=∠POC时,△POB≌△POC,
作PM⊥x轴于M,作PN⊥y轴于N,
∴∠POM=∠PON=45°.
∴PM=PN
∴设P(m,m),则m=﹣m2+2m+3,
∴m=,
∵点P在第三象限,
∴P(,).
(3)①如图,当∠Q1AB=90°时,作AE⊥y轴于E,
∴E(0,4)
∵∠DA Q1=∠DOB=90°,∠AD Q1=∠BDO
∴△DAQ1∽△DOB,
∴,
∴DQ1=,
∴OQ1=,
∴Q1(0,);
②如图,
当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°
∴∠DBO=∠O Q2B
∵∠DOB=∠B O Q2=90°
∴△BOQ2∽△DOB,
∴,
∴,
∴OQ2=,
∴Q2(0,-);
③如图,当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,
∴∠AQ3E+∠E AQ3=∠AQ3E+∠B Q3O=90°
∴∠E AQ3=∠B Q3O
∴△BOQ3∽△Q3EA,
∴,,
∴OQ32﹣4OQ3+3=0,
∴OQ3=1或3,
∴Q3(0,1)或(0,3).
综上,Q点坐标为(0,)或(0,-)或(0,1)或(0,3).
科目:初中数学 来源: 题型:
【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,轴,轴,点在x轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2)把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-D-E-F-G-H-P-A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()
A.(1,1)B.(1,2)
C.(1,2)D.(1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
⑴ 如图2,在梯形ABCD中,BC∥AD,AB=BC=CD, 点M、N分别在AD、CD上,若∠MBN=∠ABC ,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
⑵ 如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)
(2)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正确的结论有_______(只需填写序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com