【题目】(1)如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)
(2)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的表达式为y=x2-2x-6,AB为半圆的直径,则这个“果圆”被y轴截得的“弦”CD的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D落在AB边上,斜边DE交AC于点F,则n的大小和图中阴影部分的面积分别为( )
A. 30,2 B. 60,2 C. 60, D. 60,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,点在直线上(,除外),的垂线与的垂线交于点,研究和的数量关系.
(1)在探究,的关系时,运用“从特殊到一般”的数学思想,发现当点是的中点时,只需要取边的中点(如图),通过推理证明就可以得到的数量关系,请你按照这种思路直接写出和的数量关系:_____________________
(2)当点是线段上(,除外)任意一点(其它条件不变),上面得到的结论是否仍然成立呢?证明你的结论;
(3)点在线段的延长线上,上面得到的结论是否仍然成立呢?在下图中画出图形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,∠E=90°,那么∠B+∠D等于多少度?为什么?
解:过点E作EF∥AB,
得∠B+∠BEF=180°(________________________),
因为AB∥CD(已知),
EF∥AB(所作),
所以EF//CD(________________________).
得________________________(两直线平行,同旁内角互补),
所以∠B+∠BEF+∠DEF+∠D=________°(__________).
即∠B+∠BED+∠D=___________°.
因为∠BED=90°(已知),
所以∠B+∠D=___________°(等式性质)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市A,B两镇相距42千米,分别从A,B处测得某风景区中心C处的方位角如图所示,风景区区域是以C为圆心,15千米为半径的圆,tanα=1.673,tanβ=1.327.为了开发旅游,有关部门要设计修建连接A,B两市的县级公路.问连接A,B的两镇的县级公路是否穿过风景区,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示.
(1)图象表示了哪两个变量的关系?
(2)10时和11时,他分别离家多远?
(3)他最初到达离家最远的地方是什么时间?离家多远?
(4)11时到13时他行驶了多少千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com