精英家教网 > 初中数学 > 题目详情

【题目】如图我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点ABCD分别是“果圆”与坐标轴的交点抛物线的表达式为yx2-2x-6,AB为半圆的直径则这个“果圆”被y轴截得的“弦”CD的长为________

【答案】2+6

【解析】

将x=0代入抛物线的解析式得y=-6,故此可得到DO的长,然后令y=0可求得点A和点B的坐标,故此可得到AB的长,由M为圆心可得到MC和OM的长,然后依据勾股定理可求得OC的长,最后依据CD=OC+OD求解即可.

连接AC,BC.

∵抛物线的解析式为yx2-2x-6,

∴点D的坐标为(0,-6),

∴OD的长为6.

设y=0,则0x2-2x-6,解得:x=-2或6,

∴A(-2,0),B(6,0).

∴AO=2,BO=6,AB=8,M(2,0).

∴MC=4,OM=2.

在Rt△COB中,OC= ,

∴CD=CO+OD=6+2,即这个“果圆”被y轴截得的线段CD的长6+2

故答案为:6+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD的四边都相等,等边AEF的顶点E、F分别在BC、CD上,且AE=AB,则∠C=(  )

A. 100° B. 105° C. 110° D. 120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角△ABC中,AC10SABC 25,∠BAC的平分线交BC于点D,点MN分别是ADAB上的动点,则BMMN的最小值是( )

A. 4 B. C. 5 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtACB中,∠ACB=90°,ABC的角平分线AD、BE相交于点P,过PPFADBC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;BF=BA;PH=PD;④连接CP,CP平分∠ACB,其中正确的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科技馆是少年儿童节假日游玩的乐园.

如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.

(1)请写出图中曲线对应的函数解析式;

(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.

(1)求证:ABM≌△BCN;

(2)求APN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, AB=CB, BD=BE, ABC=DBE=a.

1)当a=60°, 如图①则,∠DPE的度数______________

2)若△BDE绕点B旋转一定角度,如图②所示,求∠DPE(用a表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在北海市创建全国文明城活动中,需要30名志愿者担任“讲文明树新风”公益广告宣传工作,其中男生18人,女生12人.

(1)若从这30人中随机选取一人作为“展板挂图”讲解员,求选到女生的概率;

(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,在直线MN上求作一点P,使点P到射线OAOB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)

2)等腰三角形的两边长满足|a4|(b9)20.求这个等腰三角形的周长.

查看答案和解析>>

同步练习册答案