精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠B30°∠C50°AE∠BAC的平分线,AD是高.

(1)∠BAE的度数;

(2)∠EAD的度数.

【答案】∠BAE50°,∠EAD10°

【解析】

试题(1)根据△ABC的内角和定理求得∠BAC=100°;然后由角平分线的性质、△ABE的内角和定理来求∠BAE的度数;

2)由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=

∠BAC,故∠EAD=∠EAC-∠DAC

解:(1△ABC中,∠B=30°∠C=50°

∴∠BAC=180°-∠B-∠C=100°

∵AE∠BAC的平分线,

∴∠BAE=∠BAC=50°

2∵AD是边BC上的高,

∴∠ADC=90°

△ADC中,∠C=50°∠C+∠DAC=90°

∴∠DAC=40°

由(1)知,∠BAE=∠CAE=50°

∴∠DAE=∠EAC-∠DAC=50°-40°=10°,即∠EAD=10°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用“※”定义一种新运算:对于任意有理数ab,规定abab2+2ab+a

如:121×22+2×1×2+19

1)(﹣2)※3 

2)若316,求a的值;

3)若2xm,(x)※3n(其中x为有理数),试比较mn的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.

【答案】 .

【解析】试题分析:

根据题意列表如下由表可以得到所有的等可能结果再求出所有结果中两次所摸到小球的数字之和为4的次数即可计算得到所求概率.

试题解析

列表如下:

1

2

3

4

1

(1,1)

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,2)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,3)

(3,4)

4

(4,1)

(4,2)

(4,3)

(4,4)

由表可知,共有16种等可能事件,其中两次摸到的小球数字之和等于4的有(3,1)、(2,2)和(1,3),共计3

P(两次摸到小球的数字之和等于4=.

型】解答
束】
23

【题目】小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90,BC=4,AC=3,线段PQBCQ(如图,此时点Q与点B重合)PQ=AB,当点P沿PBB滑动时,点Q相应的从B沿BCC滑动,始终保持PQ=AB不变,当ABCPBQ全等时,PB的长度等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.

(1)求证:ABM≌△BCN;

(2)求APN的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到条折痕,那么对折四次可以得到( )条折痕.如果对折次, 可以得到( )条折痕

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠B=90°, AB//CD,MBC边上的一点,AM平分∠BADDM平分∠ADC,

求证:(1) AMDM;

(2) MBC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ACAB.

(1)AB边的垂直平分线交BC于点P,作AC边的垂直平分线交BC于点Q,连接APAQ.(尺规作图,保留作图痕迹,不需要写作法)

(2)(1)的条件下,若BC14,求△APQ的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点 A 是反比例函数 y 在第一象限图象上的一个动点,连接 OA,以OA 为长,OA为宽作矩形 AOCB,且点 C 在第四象限,随着点 A 的运动,点 C 也随之运动,但点 C 始终在反比例函数 y 的图象上,则 k 的值为________.

查看答案和解析>>

同步练习册答案