精英家教网 > 初中数学 > 题目详情
16.(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=5,AC=3,CE平分∠ACD,求BE的长;
(2)小明完成(1)后,联想到如下问题:已知一个角的两边是a和b,顶点在矩形图纸外面(如图2),请用直尺和圆规在矩形图纸内作出这个角的平分线.(注:直尺没有刻度!作图不要求写作法,但要保留作图痕迹,并对作图中涉及的点用字母进行标注.作图过程中如果要突破矩形图纸限制,可适当延伸,但不得使a、b相交.)
爱动脑筋的你一起来完成这个作图吧!

分析 (1)作EM⊥AC交AC于点M,利用勾股定理求出BC,再利用△ACD∽△ABC,得出$\frac{EM}{AE}$=$\frac{BC}{AB}$,可解得AD的值,由角平分线定理可得EM=DE,联立可解出AE的值,利用BE=AB-AE即可求解,
(2)延长两边分别作两组角的平分线,连接平分线的两个交点所在的线就是这个角的平分线.

解答 解:(1)如图1,作EM⊥AC交AC于点M,
 
∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=5,AC=3,
∴BC=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∵△ACD∽△ABC,
∴$\frac{AD}{AC}$=$\frac{AC}{AB}$,即$\frac{AD}{3}$=$\frac{3}{5}$,解得AD=$\frac{9}{5}$,
∵∠ABC=∠AEM,
∴$\frac{EM}{AE}$=$\frac{BC}{AB}$,即$\frac{EM}{AE}$=$\frac{4}{5}$,
∵CE平分∠ACD,CD⊥AB,EM⊥AC,
∴EM=DE,
∴$\frac{DE}{AE}$=$\frac{4}{5}$且DE+AE=$\frac{9}{5}$,解得DE=$\frac{4}{5}$,AE=1,
∴BE=AB-AE=5-1=4.
(2)如图2,延长两边分别作两组角的平分线,连接平分线的两个交点所在的线就是这个角的平分线.

点评 本题主要考查了作图,角平分线的性质及勾股定理,解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年江苏省七年级下学期第一次课堂调研数学试卷(解析版) 题型:填空题

已知m+n=2,mn=-2,则(1-m)(1-n)=___________。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,梯形ABCD中,AD∥BC,∠D=90°,∠ABC=60°,CD=3$\sqrt{3}$,AD=16,点P是AD边上的一动点.
(1)若tan∠PCB=$\frac{{3\sqrt{3}}}{4}$,求AP的长;
(2)如图2,若∠CPB=120°,
①△PCB与△ABP相似吗?为什么?
②求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知等腰三角形一边长为3,一边长为2,则这个三角形周长为(  )
A.6B.7C.8D.7或8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )
A.8$\sqrt{3}$B.8C.4$\sqrt{3}$D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知c≤b≤a,且a+b+c=10,abc-23a=40,求|a|+|b|+|c|的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示,已知AB∥EF∥CD,AC,BD相交于点E,AB=3cm,CD=6cm,则EF=2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在求1+7+72+73+74+75+76+77+78+79的值时,小林发现,从第二个加数起每一个加数都是前一个加数的7倍,于是她设:
S=1+7+72+73+74+75+76+77+78+79…①
然后在①式的两边都乘以7,得:
7S=7+72+73+74+75+76+77+78+79+710…②
②-①得7S-S=710-1,所以S=$\frac{{7}^{10}-1}{6}$,得出答案后,爱动脑筋的小林想:如果把“7”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+a5+a6+a7+a8+a9+…+a2014的值?你的答案是$\frac{{a}^{2015}-1}{a-1}$.

查看答案和解析>>

同步练习册答案