精英家教网 > 初中数学 > 题目详情

【题目】1A型钢板可制成2C型钢板和1D型钢板;用1B型钢板可制成1C型钢板和3D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数).

(1)求A、B型钢板的购买方案共有多少种?

(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,请你设计获利最大的购买方案.

【答案】(1)A、B型钢板的购买方案共有6种;(2)购买A型钢板20块,B型钢板80块时,获得的利润最大.

【解析】1)根据“C型钢板不少于120块,D型钢板不少于250建立不等式组,即可得出结论;

(2)先建立总利润和x的关系,即可得出结论.

1)购买A型钢板x块,则购买B型钢板(100﹣x)块,

根据题意得,

解得,20≤x≤25,

x为整数,

x=20,21,22,23,24,256种方案,

即:A、B型钢板的购买方案共有6种;

(2)设总利润为w,根据题意得,

w=100[2x+(100﹣x)]+120[x+3(100﹣x)]=﹣140x+46000,

﹣140<0,y随着x的增大而减小,

∴当x=20时,wmax=﹣140×20+46000=43200元,

即:购买A型钢板20块,B型钢板80块时,获得的利润最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtAOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将AOB绕点B逆时针旋转90°后,得到A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若SABO=4,tan∠BAO=2,则k=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BC5,高ADBE相交于点OBDCD,且AEBE

1)求线段AO的长;

2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,PQ两点同时出发,当点P到达A点时,PQ两点同时停止运动.设点P的运动时间为t秒,POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;

3)在(2)的条件下,点F是直线AC上的一点且CFBO.是否存在t值,使以点BOP为顶点的三角形与以点FCQ为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

善于思考的小聪在解方程组时,发现方程组①和②之间存在一定关系,他的解法如下:

解:将方程②变形为:2x-3y-2y=5③,

把方程①代入方程③得:3-2y=5

解得y=-1

y=-1代入方程①得x=0

∴原方程组的解为

小聪的这种解法叫整体换元法.请用整体换元法完成下列问题:

1)解方程组:

①把方程①代入方程②,则方程②变为______

②原方程组的解为______

2)解方程组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=∠C90°BE平分∠ABCDF平分∠CDA

(1)求证:BEDF

(2)若∠ABC56°,求∠ADF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PCAB于点E,且PA=PB.

(1)求证:PB是⊙O的切线;

(2)若∠APC=3BPC,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(a,m)在双曲线y=上且m<0,过点Ax轴的垂线,垂足为B.

(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,

①若t=1,直接写出点C的坐标;

②若双曲线y=经过点C,求t的值.

(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求mn的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BOC=9°,点AOB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=(  )

A. 10B. 9C. 8D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AECF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是(

A. AE=AFB. EFACC. B=60°D. AC是∠EAF的平分线

查看答案和解析>>

同步练习册答案