精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=

【答案】1.5
【解析】解:根据折叠可得BE=EB′,AB′=AB=3, 设BE=EB′=x,则EC=4﹣x,
∵∠B=90°,AB=3,BC=4,
∴在Rt△ABC中,由勾股定理得,
∴B′C=5﹣3=2,
在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2
解得x=1.5,
故答案为:1.5.
首先根据折叠可得BE=EB′,AB′=AB=3,然后设BE=EB′=x,则EC=4﹣x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理可得方程x2+22=(4﹣x)2 , 再解方程即可算出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列命题正确的个数是( )

①等腰三角形的腰长大于底边长;

②三条线段,如果,那么这三条线段一定可以组成三角形;

③等腰三角形是轴对称图形,它的对称轴是底边上的高;

④面积相等的两个三角形全等.

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,AB=5,AC=8,点P是对角线AC上的一个动点,过点P作EF垂直于AC交AD于点E,交AB于点F,将△AEF折叠,使点A落在点A′处,当△A′CD时等腰三角形时,AP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某居民区道路上的“早市”引起了大家关注,小明想了解本小区居民对“早市”的看法,进行了一次抽样调查,把居民对“早市”的看法分为四个层次:A、非常赞同B、赞同但要有一定的限制;C、无所谓D、不赞同,并将调查结果绘制了图1和图2两幅不完整的统计图.

请你根据图中提供的信息解答下列问题:

(1)求本次被抽查的居民有多少人?

(2)将图1和图2补充完整;

(3)求图2中“C”层次所在扇形的圆心角的度数;

(4)估计该小区4000名居民中对“早市”的看法表示赞同(包括A层次).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与计算:请阅读以下材料,并完成相应的任务.
斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.
斐波那契数列中的第n个数可以用 [ ]表示(其中,n≥1).这是用无理数表示有理数的一个范例.
任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若8x=4x+2 , 则x=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80 m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:

(1)从上述统计图中可知:每人每分能擦课桌椅m2;擦玻璃、擦课桌椅、扫地拖地的面积分别是m2m2m2;
(2)如果x人每分钟擦玻璃的面积是y m2 , 那么y关于x的函数关系式是;
(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生委员,该如何分配这两组的人数才能最快地完成任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(ab23的结果是(

A.ab5B.ab6C.a3b5D.a3b6

查看答案和解析>>

同步练习册答案