精英家教网 > 初中数学 > 题目详情

【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)△EFD≌△GFB.
(2)试判断四边形FBGD的形状,并说明理由.
(3)当△ABC满足条件时,四边形FBGD是正方形(不用说明理由).

【答案】
(1)解:∵EG垂直平分BD,

∴EB=ED,GB=GD,

∴∠EBD=∠EDB,

∵∠EBD=∠DBC,

∴∠EDF=∠GBF,

在△EFD和△GFB中,

∴△EFD≌△GFB


(2)解:四边形EBGD是菱形.

理由:∵EG垂直平分BD,

∴EB=ED,GB=GD,

∴∠EBD=∠EDB,

∵∠EBD=∠DBC,

∴∠EDF=∠GBF,

在△EFD和△GFB中,

∴△EFD≌△GFB,

∴ED=BG,

∴BE=ED=DG=GB,

∴四边形EBGD是菱形


(3)∠ABC=90°
【解析】解:(3)当△ABC是直角三角形,即∠ABC=90°时,四边形FBGD是正方形,根据有一个角是直角的菱形是正方形可以得出.

所以答案是:∠ABC=90°.

【考点精析】利用菱形的性质和正方形的判定方法对题目进行判断即可得到答案,需要熟知菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线m与直线n相交于点OAB两点同时从点O出发,点A以每秒x个单位长度沿直线n向左运动,点B以每秒y个单位长度沿直线m向上运动。

(1)若运动1s时,点B比点A多运动1个单位;运动2s时,点B与点A运动的路程和为6个单位,则x=_________y=___________.

(2)如图,当直线m与直线n垂直时,设∠BAO和∠ABO的角平分线相交于点P.在点AB在运动的过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值(写出主要过程);若发生变化,请说明理由.

(3)如图,将(2)中的直线n不动,直线m绕点O按顺时针方向旋转α(0<ɑ<90),其他条件不变.)用含有α的式子表示∠APB的度数____________.

)如果再分别作ABO的两个外角∠BAC,∠ABD的角平分线相交于点Q,并延长BPQA交于点M.则下列结论正确的是___________(填序号) .

APB与∠Q互补;②∠Q与∠M互余;③∠APB-∠M为定值;④∠M-∠Q为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程组解应用题

为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有AB两种型号,其中每台的价格,年省油量如下表:

A

B

价格(万元/台)

a

b

节省的油量(万升/年)

2.4

2

经调查,购买一台A型车比购买一台B型车多20万元,购买2A型车比购买3B型车少60万元.

1)请求出ab

2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题 ——
(1)用配方法解一元二次方程:2x2﹣4x﹣5=0.
(2)化简: ÷(x+2﹣ ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船沿正南方向以33海里/时的速度匀速航行,在m处观测到灯塔p在西偏南69°方向下,航行2小时后到达n处,观测灯塔p在西偏南57°方向上,若该船继续向南航行至离灯塔最近位置,求此时轮船离灯塔的距离约为多少海里?(结果精确到整数,参考数据:tan33°≈ ,sin33°≈ ,cos33°≈ ,tan21°≈ ,sin21°≈ ,c0s21°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD是平行四边形E是边CD上一点BC=EC,CF⊥BEAB于点F,PEB延长线上一点下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,把直角三角形的直角顶点放在直线上,射线平分.

1)如图,若,求的度数.

2)若,则的度数为 .

3)由(1)和(2),我们发现之间有什么样的数量关系?

4)若将三角形绕点旋转到如图所示的位置,试问之间的数量关系是否发生变化?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了如图,作一个,以O为圆心任意长为半径画弧分别交OAOB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接小鹏通过观察和推理,得出结论:OP平分

你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.

已知:中,____________________________________

求证:OP平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A,B,C满足二次函数y=ax2+bx的表达式,则对该二次函数的系数a和b判断正确的是( )

A.a>0,b>0
B.a<0,b<0
C.a>0,b<0
D.a<0,b>0

查看答案和解析>>

同步练习册答案