精英家教网 > 初中数学 > 题目详情

【题目】如图,以BC为直径的⊙O与△ABC的另两边分别相交于点DE . 若∠A=60°,BC=6,则图中阴影部分的面积为

A.π
B.π
C.π
D.3π

【答案】D
【解析】解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD、△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)=360°-120°-120°=120°,
∵BC=6,
∴OB=OC=3,
∴S阴影==3π
故选D.
【考点精析】解答此题的关键在于理解扇形面积计算公式的相关知识,掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某厂家在甲、乙两家商场销售同一商品所获利润分别为y,y(单位:元),y,y与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题:

(1)分别求出y,y与x的函数关系式;

(2)现厂家分配该商品给甲、乙两商场共计1200件,当甲、乙商场售完这批商品,厂家可获得总利润为1080元,问厂家如何分配这批商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点M、N分别为ABCD的边CD、AB的中点,连接AM、CN.
(1)证明:AM=CN;
(2)过点B作BH⊥AM于点H,交CN于点E,连接CH,判断线段CB、CH的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是
A.3a+2b=5ab
B.(-3a2b)2=-6a4b2
C. =4
D.(ab)2a2b2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般情况下不成立,但有些数可以使得它成立,例如:ab=0.我们称使得成立的一对数ab为“相伴数对”,记为(ab).

(1)若(1,b)是“相伴数对”,求b的值;

(2)若(mn是“相伴数对”,其中m≠0,求

(3)若(mn)是“相伴数对”,求代数式m﹣[4m﹣2(3n﹣1)]的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题

(1)

(2)(2x)2x4÷x

(3)

(4)

(5)(x﹣2)(2+x)﹣(2﹣x)(x﹣2)

(6)(6x4y2+8x3y4)÷2xy2﹣(﹣2xy)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点AOB.(顶点是网格线的交点)

(1)画出将AOB沿y轴翻折得到的AOB1,则点B1的坐标为_________.

(2)画出将AOB沿射线AB1方向平移2.5个单位得到的A2O2B2,则点A2的坐标为_______.

(3)请求出AB1B2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(0,4),B(2,0).

(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)结合图象直接写出不等式kx+b< 的解集.

查看答案和解析>>

同步练习册答案