【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点, C点的坐标是(4,-1),D点的横坐标为-2.
(1)求反比例函数与一次函数的关系式;
(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.
(1)求证:DA=DF;
(2)若∠ADE=∠CDE=30°,DE=2,求ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)写出(x,y)的所有可能出现的结果;
(2)小明、小华各取一次,由取出小球所确定的数字作为点的坐标,这样的点(x,y)中落在反比例函数y=的图象上的点的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.
(图1) (图2) (备用图)
(1)请判断:AF与BE的数量关系是_____________,位置关系______________;
(2)如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A →B(+1,+3),从B到A记为:B→A(﹣1,-3),其中第一个数表示左右方向,第二个数表示上下方向.
(1)图中A →C(______,______),B →C(______,______),C→_______(+1,﹣2);
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(3)从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;
(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地果园分别有橘子40吨和60吨,C、D两地分别需要橘子30吨和70吨;已知从A、B到C、D的运价如表:
到C地 | 到D地 | |
A果园 | 每吨15元 | 每吨12元 |
B果园 | 每吨10元 | 每吨9元 |
(1)若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为 吨,从A果园将橘子运往D地的运输费用为 元.
(2)用含x的式子表示出总运输费(要求:列式、化简)
(3)若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且.则当x= 时,w有最 值(填“大”或“小”),这个值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:
学生最喜欢的活动项目的人数统计表
项目 | 学生数(名) | 百分比 |
丢沙包 | 20 | 10% |
打篮球 | 60 | p% |
跳大绳 | n | 40% |
踢毽球 | 40 | 20% |
根据图表中提供的信息,解答下列问题:
(1)m= ,n= ,p= ;
(2)请根据以上信息直接补全条形统计图;
(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用火柴棒按下列方式搭建三角形:
(1)填表:
三角形个数 | 1 | 2 | 3 | 4 | … |
火柴棒根数 | … |
(2)当三角形的个数为时,火柴棒的根数是多少?
(3)求当时,有多少根火柴棒?
(4)当火柴棒的根数为2017时,三角形的个数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法
解:∵x﹣y=2,∴x=y+2 又∵x>1∴y+2>1∴y>﹣1
又∵y<0∴﹣1<y<0…①
同理可得1<x<2…②
由①+②得:﹣1+1<x+y<0+2∴x+y的取值范围是0<x+y<2
按照上述方法,完成下列问题:
(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是
(2)已知关于x,y的方程组的解都是正数
①求a的取值范围;②若a﹣b=4,求a+b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com