【题目】用火柴棒按下列方式搭建三角形:
(1)填表:
三角形个数 | 1 | 2 | 3 | 4 | … |
火柴棒根数 | … |
(2)当三角形的个数为时,火柴棒的根数是多少?
(3)求当时,有多少根火柴棒?
(4)当火柴棒的根数为2017时,三角形的个数是多少?
科目:初中数学 来源: 题型:
【题目】如图,小明在大楼45米高(即PH=45米,且PH⊥HC)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的
坡度i(即tan∠ABC)为1: .(点P、H、B、C、A在同一个平面上
点H、B、C在同一条直线上)
(1)∠PBA的度数等于________度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据: ≈1.414, ≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点, C点的坐标是(4,-1),D点的横坐标为-2.
(1)求反比例函数与一次函数的关系式;
(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为和斜边长为图(2)是以为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.
(1)在图(3)处画出拼成的这个图形的示意图;
(2)利用(1)画出的图形证明勾股定理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB.
小明说:“如果还知道∠CDG=∠BFE,那么能得到∠AGD=∠ACB.”
小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”
小刚说:“∠AGD一定大于∠BFE.”
小颖说:“如果连结GF,那么GF一定平行于AB.”
他们四人中,有________个人的说法是正确的.( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD与正方形BFGE中,点E在边AB上,若AE=a,BE=b,(其中a>2b).
(1)请用含有a,b的代数式表示图中阴影部分的面积;
(2)当a=5cm,b=3cm时,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠B<90,BC>AB.作AE⊥BC于点E,AF⊥CD于点F,记∠EAF的度数为α,AE=a,AF=b.则以下选项错误的是( )
A. ∠D的度数为α
B. a∶b=CD∶BC
C. 若α=60,则平行四边形ABCD的周长为
D. 若α=60,则四边形AECF的面积为平行四边形ABCD面积的一半
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老王想靠着一面旧墙EF,开垦一块长方形的菜地ABCD,如图所示,菜地的一边靠墙,另外三边用竹篱笆围起来,并在平行于墙的一边BC上留1米宽装门,已知现有竹篱笆长共32米,全部用完.(损耗不计)
(1)设垂直于墙面的一边AB长为x米,请用含有x的代数式来表示菜园的面积.
(2)当x=8时,求菜地面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OC是∠AOB内一条射线,OD、OE分别是∠AOC、∠BOC的平分线.
(1)如图①,当∠AOB=80°时,∠DOE=_______°;
(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;
(3)当射线OC在∠AOB外如图③所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系是_______;
(4)当射线OC在∠AOB外如图④所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com