精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,PBD上一点,AP的延长线交CD于点Q,交BC的延长线于点G,点MGQ的中点,连接CM.求证:PCMC.

【答案】见解析

【解析】分析:根据正方形的性质可得出∠ADP=∠CDP、AD=CD,结合DP=DP即可证出△ADP≌△CDP(SAS),根据全等三角形的性质可得出∠DCP=∠DAG,由AD∥BG可得出∠DAG=∠G,进而得出∠DCP=∠G,由直角三角形斜边上中线等于斜边的一半可得出∠MCQ=∠MQC,再结合∠G、∠MQC互余,即可证出∠DCP+∠MCQ=90°,即PC⊥MC.

详解:证明:∵BD为正方形ABCD的对角线,

∴∠ADP=∠CDP,AD=CD.

在△ADP和△CDP中,

∴△ADP≌△CDP(SAS),

∴∠DCP=∠DAG.

又∵四边形ABCD为正方形

∴AD∥BG,

∴∠DAG=∠G.

∴∠DCP=∠G.

又∵∠QCG=90°,M为GQ中点

∴CM=QM,

∴∠MCQ=∠MQC.

又∵∠G+∠MQC=90°,

∴∠DCP+∠MCQ=90°,

∴PC⊥MC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠B=90°AD=8cmBC=10cmAB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,PQ两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为ts

1)直接写出:QD=______cmPC=_______cm;(用含t的式子表示)

2)当t为何值时,四边形PQDC为平行四边形?

3)若点P与点C不重合,且DQ≠DP,当t为何值时,DPQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)化简求值:(2+a)(2-a)+a(a-2b)+3a5b÷(-a2b)4,其中ab=-.

(2)因式分解:a(n-1)2-2a(n-1)+a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

(1)作ABC关于点C成中心对称的A1B1C1

(2)将A1B1C1向右平移3个单位,作出平移后的A2B2C2

(3)在x轴上求作一点P,使PA1+PC2的值最小,并求最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面内,两条直线L1,L2相交于点O,对于平面内任意一点M,p,q分别是点M到直线L1,L2的距离,则称(p,q)为点M距离坐标”.根据上述规定,“距离坐标(2,1)的点共有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3a0)经过点A10),B0),且与y轴相交于点C

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当△DCE与△AOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线ab被直线l所截,则图中对顶角有______对,分别是_____________;邻补角有______对,分别是____________;同位角有________对,分别是____________;内错角有________对,分别是____________;同旁内角有______对,分别是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形是平行四边形,点边上运动(点不与点重合)

1)如图1,当点运动到边的中点时,连接,若平分,证明:

2)如图2,过点且交的延长线于点,连接.若,在线段上是否存在一点,使得四边形是菱形?若存在,请说明当发,点分别在线段上什么位置时四边形是菱形,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学数学活动小组在学习了利用三角函数测高后,选定测量小河对岸一幢建筑物BC的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)

查看答案和解析>>

同步练习册答案