精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,ACB90°,过点DDEBCBC的延长线于点E

1)求证:四边形ACED是矩形;

2)连接AECD于点F,连接BF.若ABC60°CE2,求BF的长.

【答案】1)见解析;(2

【解析】

1)根据四边形ABCD是平行四边形,可得ADBC.所以CADACB90°.又ACE90°,即可证明四边形ACED是矩形;

2)根据四边形ACED是矩形,和四边形ABCD是平行四边形,可以证明ABE是等边三角形.再根据特殊角三角函数即可求出BF的长.

1)证明:四边形ABCD是平行四边形,

ADBC

∴∠CADACB90°

∵∠ACE90°DEBC

四边形ACED是矩形.

2)解:四边形ACED是矩形,

ADCE2AFEFAECD

四边形ABCD是平行四边形,

BCAD2ABCD

ABAE

∵∠ABC60°

∴△ABE是等边三角形.

∴∠BFE90°

RtBFE中,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题探究

1)请在图①的的边上求作一点,使最短;

2)如图②,点内部一点,且满足.求证:点到点的距离之和最短,即最短;

问题解决

3)如图③,某高校有一块边长为400米的正方形草坪,现准备在草坪内放置一对石凳及垃圾箱在点处,使点三点的距离之和最小,那么是否存在符合条件的点?若存在,请作出点的位置,并求出这个最短距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于的方程有实数根.

(1)的取值范围;

(2)若该方程有两个实数根,取一个的值,求此时该方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC为等边三角形.

1)求作:ABC的外接圆O.(不写作法,保留作图痕迹)

2)射线AOBC于点D,交O于点E,过EO的切线EF,与AB的延长线交于点F

根据题意,将(1)中图形补全;

求证:EFBC

DE2,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区经过三年的新农村建设,年经济收入实现了翻两番(即是原来的22倍).为了更好地了解该地区的经济收入变化情况,统计了该地区新农村建设前后的年经济收入构成结构如图,则下列结论中不正确的是(  )

A.新农村建设后,种植收入减少了

B.新农村建设后,养殖收入实现了翻两番

C.新农村建设后,第三产业收入比新农村建设前的年经济收入还多

D.新农村建设后,第三产业收入与养殖收入之和超过了年经济收入的一半

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线yax2+4ax+ba0)的顶点Ax轴上,与y轴交于点B

1)用含a的代数式表示b

2)若∠BAO45°,求a的值;

3)横、纵坐标都是整数的点叫做整点.若抛物线在点AB之间的部分与线段AB所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠B=∠C.以AB为直径的⊙OBC于点D,过点DDEAC于点E

1)求证:DE与⊙O相切;

2)延长DEBA的延长线于点F,若AB8sinB,求线段FA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ABC是等边三角形.

1)如图1,将线段AC绕点A逆时针旋转90°,得到AD,连接BD,∠BAC的平分线交BD于点E,连接CE

①求∠AED的度数;

②用等式表示线段AECEBD之间的数量关系(直接写出结果).

2)如图2,将线段AC绕点A顺时针旋转90°,得到AD,连接BD,∠BAC的平分线交DB的延长线于点E,连接CE

①依题意补全图2

②用等式表示线段AECEBD之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,对角线ACBD交于点OE是边AD上的一个动点(与点AD不重合),连接EO并延长,交BC于点F,连接BEDF.下列说法:

对于任意的点E,四边形BEDF都是平行四边形;

当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;

AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;

当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.

所有正确说法的序号是:_________

查看答案和解析>>

同步练习册答案