精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=13AC=5BC边上的中线AD=6,点EAD的延长线上,且AD=DE

(1)试判断△ABE的形状并说明理由;

(2)求△ABC的面积.

【答案】(1)△ABE是直角三角形;证明见解析;(2)30

【解析】

1)证明△ACD≌△EBD,得到BE=AC=5,再由AE=12,AB=13,得到∠E=90°,从而得到结论

(2)由△ACD≌△EBD得到SABC=SABE从而得到结论

1)∵ADBC边上的中线,∴BD=CD

在△ACD与△EBD中,∵,∴△ACD≌△EBD,∴BE=AC=5.

AD=DE=6,∴AE=12.

AE2+BE2=52+122=169AB2=132=169,∴AE2+BE2= AB2,∴∠E=90°,∴△ABE是直角三角形.

2)∵△ACD≌△EBD ,∴SABC=SABE=×EA×BE=×12×5 =30.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边ABBC的距离相等,并且点P到点AD的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=RtAB=5cmBC=3cm,若动点P从点C开始,按CABC的路径运动,且速度为每秒1cm,设出发的时间为t秒.

1)出发2秒后,求△ABP的周长.

2)问t满足什么条件时,△BCP为直角三角形?

3)另有一点Q,从点C开始,按CBAC的路径运动,且速度为每秒2cm,若PQ两点同时出发,当PQ中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=,DAB边上的一点,过DDEABAC于点E,BC=BD,连结CDBE于点F.

(1)求证:CE=DE;

(2)若点DAB的中点,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣2x+4与坐标轴分别交于C、B两点,过点C作CD⊥x轴,点P是x轴下方直线CD上的一点,且△OCP与△OBC相似,求过点P的双曲线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,A(-10)B(10)C(01),点Dx轴正半轴上的一个动点,点E为第一象限内一点,且CECDCE=CD

(1)试说明:∠EBCCAB

(2)取DE的中点F,连接OF,试判断OFAC的位置关系,并说明理由;

(3)在(2)的条件下,试探索ODF三点能否构成等腰三角形,若能,请直接写出所有符合条件的点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以下列数组作为三角形的三条边长,其中能构成直角三角形的是( )

A. 1 3 B. 5 C. 1.522.5 D.

【答案】C

【解析】A12+2≠32,不能构成直角三角形,故选项错误;

B(2+2≠52,不能构成直角三角形,故选项错误;

C1.52+22=2.52,能构成直角三角形,故选项正确;

D、(2+22,不能构成直角三角形,故选项错误.

故选:C

型】单选题
束】
3

【题目】在RtABC中,C=90°,AC=9,BC=12,则点C到斜边AB的距离是( )

ABC9D6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.
(1)求证:BE=DF;
(2)求证:AF∥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,D是BC的中点.
(1)作图: ①过B作AC的平行线BH;
②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.
(2)在图中找出一对全等的三角形,并证明你的结论.

查看答案和解析>>

同步练习册答案