【题目】如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为___________
【答案】π
【解析】
连接OB、OC,如图,利用切线的性质得∠ABO=90°,再利用直角三角形的性质可求出∠BAO=30°,则∠AOB=60°,接着利用平行线的性质得到∠CBO=∠AOB=60°,利用三角形面积公式可得到S△ABC=S△OCB,然后根据扇形的面积公式,利用图中阴影部分的面积=S扇形BOC进行计算.
解:连接OB、OC,如图,
∵AB切⊙O于点B,
∴OB⊥AB,
∴∠ABO=90°,
在Rt△ABO中,∵OA=4,OB=2,
∴∠BAO=30°,
∴∠AOB=60°,
∵BC∥OA,
∴∠CBO=∠AOB=60°,S△ABC=S△OCB,
∴∠BOC=60°,图中阴影部分的面积=S扇形BOC,
∴图中阴影部分的面积==π.
故答案为π.
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是( )
A. 13 B. C. 60 D. 120
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于,不大于,设绿化区较长边为,活动区的面积为.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于,算出.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)求活动区的最大面积;
(3)预计活动区造价为50元/,绿化区造价为40元/,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.
(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为 ;
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为 ;
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.
(1)求证:△CDF∽△BGF;
(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,
(1)求证AB是圆的直径;
(2)若AB=8,∠C=60°,求阴影部分的面积;
(3)当∠A为锐角时,试说明∠A与∠CBE的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.
(1)求B点的坐标及二次函数的解析式;
(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;
(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com