【题目】已知:如图,中,.
(1)按要求作出图形:
①延长到点,使;②延长到点,使;③连接,.
(2)猜想(1)中线段与的大小关系,并证明你的结论.
解:(1)完成作图
(2)与的大小关系是______
证明:
【答案】(1)作图见解析;(2)AD=BE,证明见解析.
【解析】
(1)根据题意画出图形;
(2)在AE上截取AF=AC,连结BF,证明△ABF≌△ABC,得到BF=BC,∠AFB=∠ACB,证明△ACD≌△EFB,根据全等三角形的性质证明即可.
解:(1)完成作图,如图所示,
(2)与的大小关系是AD=BE
如下图所示,在AE上截取AF=AC,连结BF,
在△ABF和△ABC中,
∵AF=AC,∠FAB=∠CAB=90°,BA=BA,
∴△ABF≌△ABC(SAS),
∴BF=BC,∠AFB=∠ACB,
∴BF=CD,∠EFB=∠ACD,
在△ACD和△EFB中,
∵BF=CD,∠BFE=∠ACD,EF=AC,
∴△ACD≌△EFB(SAS),
∴AD=BE
科目:初中数学 来源: 题型:
【题目】下列四个命题:(1)三角形的一条中线把三角形分成面积相等的两部分;(2)有两边及其中一边的对角对应相等的两三角形全等;(3)点关于原点的对称点坐标为;(4)若,则;其中真命题的有 ( )
A. (1)、(2)B. (1)、(3)C. (2)、(3)D. (3)、(4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数的图象与轴交于A、B两点(A点在B点左侧),顶点为,
(1)求A、B、三点坐标。
(2)在平面直角坐标系中,用列表描点法,作出抛物线图象(如图),并根据图象回答,为何值时,函数值大于0?
(3)将此抛物线向下平移2个单位,请写出平移后的解析式。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点是线段所在平面内任意一点,分别以、为边,在同侧作等边和等边,联结、交于点.
(1)如图1,当点在线段上移动时,线段与的数量关系是:________;
(2)如图2,当点在直线外,且,仍分别以、为边,在 同侧作等边和等边,联结、交于点.(1)的结论是否还存在?若成立,请证明;若不成立,请说明理由.此时是否随的大小发生变化?若变化,写出变化规律,若不变,请求出的度数;
(3)如图3,在(2)的条件下,联结,求证: 平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年某市高中招生体育考试规定:九年级男生考试项目有A、B、C、D、E五类:其中A:1000米跑必考项目;B:跳绳;C:引体向上;D:立定跳远;E:50米跑,再从B、C、D、E中各选两项进行考试.
若男生甲第一次选一项,直接写出男生甲选中项目E的概率.
若甲、乙两名九年级男生在选项的过程中,第一次都是选了项目E,那么他俩第二次同时选择跳绳或立定跳远的概率是多少?请用列表法或画树状图的方法加以说明并列出所有等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、CD是的直径,于E,连接BD.
如图1,求证:;
如图2,F是OC上一点,,求证:;
在的条件下,连接BC,AF的延长线交BC于H,若,,求HF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com