【题目】如图,已知双曲线经过点
,点
是双曲线第三象限分支上的动点,过点
作
轴,过点
作
轴,垂足分别为
,
,连接
,
.
求
的值;
若
的面积为
,
①若直线的解析式为
,求
、
的值;
②根据图象,直接写出时
的取值范围;
③判断直线与
的位置关系,并说明理由.
【答案】;
①
;②由图象知当
或
时,
;③
,理由见解析.
【解析】
(1)把点D的坐标代入双曲线解析式,进行计算即可得解;
(2)①先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;
②根据图象即可得到y1>y2时x的取值范围;
③根据题意求出点A、B的坐标,然后利用待定系数由法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.
∵双曲线
经过点
,
∴,
解得;
①设点
到
的距离为
,
∵点的坐标为
,
轴,
∴,
∴,
解得,
∵点是双曲线第三象限上的动点,点
的纵坐标为
,
∴点的纵坐标为
,
∴,
解得,
∴点的坐标为
,
则,
解得;
②由图象知当或
时,
,
③.
理由如下:∵轴,
轴,设点
的坐标为
,点
的坐标为
,
∴点、
的坐标分别为
,
,
设直线的解析式为
,
则,
解得,
所以,直线的解析式为
,
设直线的解析式为
,
则,
解得,
∴直线的解析式为
,
∵、
的解析式
都等于
,
∴与
的位置关系是
.
科目:初中数学 来源: 题型:
【题目】将一个横截面是正方形的长方体平均截成段后,每段长
分米,这样表面积就增加了
平方分米,原来长方体的表面积是________平方分米,体积是________立方分米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C/.
(1)求抛物线C的函数表达式;
(2)若抛物线C/与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C/上的对应点P/,设M是C上的动点,N是C/上的动点,试探究四边形PMP/N能否成为正方形?若能,请直接写出m的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点
和点
处,
、
均在
的中垂线上,且
、
到大楼的距离分别为
米和
米,又已知
长
米,
长
米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为________人,m=________,n=________;
(2)补全条形统计图;
(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把半径为的圆周按
分割为三段.则最短的弧所对的圆心角为________,该弧和半径围成的扇形的面积为________,最长的弧所对的圆周角为________,最长的弧长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标是(1,n),与y轴的交点在(0,3)和(0,6)之间(包含端点),则下列结论错误的是( )
A.3a+b<0B.﹣2≤a≤﹣lC.abc>0D.9a+3b+2c>0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com