【题目】如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是( )
A. (m2﹣4) B. m2﹣2 C. (4﹣m2) D. 2﹣m2
【答案】B
【解析】
先求出A的坐标,设P关于x=1的对称点为Q,且设P的横坐标为x1,Q的横坐标为x2,根据题意可知x1+x2=2,x1﹣x2=m,从而求出x1与x2的表达式.
∵y=﹣2x2+4x=y=﹣2(x-1)2+2,∴抛物线的对称轴为:x=1,令y=0代入y=﹣2x2+4x,∴0=﹣2x2+4x,∴x=0或x=2,∴A(2,0),∴OA=2,设P关于x=1的对称点为Q,且设P的横坐标为x1,Q的横坐标为x2,∴.
∵抛物线向右平移m(m>2)个单位长度,∴PQ=m,∴x1﹣x2=m,∴,解得:x1=,x2=.
把x1=代入y=﹣2x2+4x,∴y=2﹣<0,∴在△PCD中,CD边上的高为:﹣2.
∵OA=CD=2,∴S△PCD=×2×()=﹣2.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+b的图象与x轴,y轴分别交于点A,B,与一次函数y=x的图象交于点M,点M的横坐标为,在x轴上有一点P(a,0),过点P作x轴的垂线,分别交一次函数y=-x+b和一次函数y=x的图象于点C,D.
(1)点M的纵坐标是 ;b的值是 ;
(2)求线段AB的长;
(3)当CD=AB时,请直接写出a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取了一部分同学就“我最喜爱的体育项目”进行了一次调查(每位同学必选且只选一项).下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:
(1)小龙一共抽取了 名学生.
(2)补全条形统计图;
(3)求“其他”部分对应的扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.
(1)如图,点D在线段CB上,四边形ACDE是正方形.
①若点G为DE中点,求FG的长.
②若DG=GF,求BC的长.
(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了改善小区环境,某小区决定要在一块边靠墙(墙长18m)的空地,修建一个矩形绿地ABCD,绿地一边靠墙,另三边用总长为40m的栅栏围住(如图),设AB边为xm,绿地面积为ym2.
(1)求y与x之间的函数关系,并求出自变量x的取值范围;
(2)绿地的面积能不能为200m2?如果能,求出x的值,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型 | 目的地 | |
A村(元/辆) | B村(元/辆) | |
大货车 | ||
800 | 900 | |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知函数y=x+2与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.
(1)求直线BC的函数解析式;
(2)设点M是x轴上的一个动点,过点M作y轴平行线,交直线AB于点P,交直线BC于点Q.
①若△PQB的面积为,求点M的坐标:
②在①的条件下,在直线PQ上找一点R,使得△MOR≌△MOQ,直接写出点R的坐标;
(3)连接BM,如图2.若∠BMP=∠BAC,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg,甲型机器人分类800kg垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等。
(1)两种机器人每小时分别分类多少垃圾?
(2)现在两种机器人共同分类700kg垃圾,工作2小时后甲型机器人因机器维修退出,求甲型机器人退出后乙型机器人还需工作多长时间才能完成?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com