【题目】如图,一次函数y=-x+b的图象与x轴,y轴分别交于点A,B,与一次函数y=x的图象交于点M,点M的横坐标为,在x轴上有一点P(a,0),过点P作x轴的垂线,分别交一次函数y=-x+b和一次函数y=x的图象于点C,D.
(1)点M的纵坐标是 ;b的值是 ;
(2)求线段AB的长;
(3)当CD=AB时,请直接写出a的值.
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的动点,M为线段EF上一动点,则BM+DM最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.
(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;
(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.
请从下列A、B两题中任选一题作答,我选择 题.
A:①求线段AD的长;
②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
B:①求线段DE的长;
②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交CD的延长线于点E.
(1)画出符合题意的图形;
(2)求∠BCD的度数;
(3)求证:CD=2BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )
A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)
C. y=2x-24(0<x<12) D. y=x-12(0<x<24)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,O为坐标原点,直线y=kx+b经过点A(﹣2,﹣1),交y轴负半轴于点B,且∠ABO=30°,过点A作直线AC⊥x轴于点C,点P在直线AC上.
(1)k= ;b= ;
(2)设△ABP的面积为S,点P的纵坐标为m.
①当m>0时,求S与m之间的函数关系式;
②当S=2时,求m的值;
③当m>0且S=4时,以BP为边作等边△BPQ,请直接写出符合条件的所有点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)求证:2CD2=AD2+DB2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>2)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S正确的是( )
A. (m2﹣4) B. m2﹣2 C. (4﹣m2) D. 2﹣m2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com