精英家教网 > 初中数学 > 题目详情

【题目】1的绝对值是___________,相反数是___________

2)计算下列各式:

3)无理数的整数部分是(

A1 B2 C3 D4

4)对于实数a,如果将不大于a的最大整数记为,则=_____________

【答案】(1)(2)-4;②(3)B(4)

【解析】

1)根据实数绝对值和相反数的求法问题可解;(2)根据平方根、立方根以及实数的相关性质对各式进行化简后进行加减运算即可;(3)估算出的范围问题可解;(4)先求出的范围,再求出的范围问题可解.

解:(1)

的绝对值是

的相反数是-=

故答案为:.

(2)

(3) <<

2<<3

无理数的整数部分是2

故应选B

(4)

,故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲乙两组学生成绩如下,甲组:30,60,6060,60,60,70,90,90,100 ;乙组:50,60,60,60,70,70,70,70,80,90.

1)以上成绩统计分析表中a=______分,b=______分,c=_______分;

组别

平均数

中位数

方差

合格率

优秀率

甲组

68

a

376

30%

乙组

b

c

90%

2)小亮同学说:这次竞赛我得了70分,在我们小组中属于中游略偏上,观察上面表格判断,小亮可能是甲乙哪个组的学生?并说明理由

3)计算乙组的方差和优秀率,如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HGAB于点E,连接DEAC于点F,连接FG.则下列结论:

①四边形AEGF是菱形;②△HED的面积是1﹣③∠AFG=112.5°;BC+FG=.其中正确的结论是(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB,垂足为H,连接AC,过上一点EEGACCD的延长线于点G,连接AECD于点F,且EG=FG

1)求证:EG是⊙O的切线;

2)延长ABGE的延长线于点M,若AH=2,求OM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣2,0),等边△AOC经过平移或轴对称或旋转都可以得到△OBD.

(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是   个单位长度;△AOC△BOD关于直线对称,则对称轴是   ;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是   度.

(2)连接AD,交OC于点E,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料阅读:

a是正整数,则长度为的线段是有可能表示正方形网格中两个格点之间的距离(设小正方形的长度为单位1).如图1所示,AB两点之间的距离就是

1)在图1中以A为一个端点,画出一条长为的线段AC

2(空格处填正整数,两组数要求不一样),并根据你填的数字,在图2中画出两种对应的线段,其长度均为

3)利用材料所给的方法,直接写出三边长分别为的三角形的面积:__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆中有折线,则弦的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数是关于的二次函数.求:

满足条件的的值;

为何值时,抛物线有最低点?求出这个最低点,这时当为何值时,的增大而增大?

为何值时,函数有最大值?最大值是多少?这时当为何值时,的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,ABC的平分线BFCD于点F,过点AAHCDH,当EDC=30CF=,则DH=______

查看答案和解析>>

同步练习册答案