精英家教网 > 初中数学 > 题目详情

【题目】材料阅读:

a是正整数,则长度为的线段是有可能表示正方形网格中两个格点之间的距离(设小正方形的长度为单位1).如图1所示,AB两点之间的距离就是

1)在图1中以A为一个端点,画出一条长为的线段AC

2(空格处填正整数,两组数要求不一样),并根据你填的数字,在图2中画出两种对应的线段,其长度均为

3)利用材料所给的方法,直接写出三边长分别为的三角形的面积:__________

【答案】(1)详见解析;(2)8174;图形见解析;(3)6.5

【解析】

1)由勾股定理可知,则问题可解;(2)由勾股定理可知则问题可解;(3)由勾股定理可以画出相应三角形,再由割补法求面积即可.

解:(1)如图1

2)由于

故答案为8174

由此在图2中画出满足条件的线段,如图2中两条实线所示;

3)在仿照材料中所给的方法,可构造如图2的虚线所示三角形

求三角形面积为:

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把两个大小不同的等腰直角三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”.

1)图1是一种放置位置及由它抽象出的几何图形,在同一条直线上,联结. 请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;

2)图2也是一种放置位置及由它抽象出的几何图形,在同一条直线上,联结,并延长交于点.请找出线段的位置关系,并说明理由;

3)请你:

①画出一个符合放置规则且不同于图1和图2所放位置的几何图形;

②写出你所画几何图形中线段的位置和数量关系;

③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线经过点,交x轴于点Ay轴于点BF为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.

时,求证:

连接CD,若的面积为S,求出St的函数关系式;

在运动过程中,直线CFx轴的负半轴于点G是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中,点E是CD边的中点,延长BC至点F,使得CF=CE,连接BE,DF,将△BEC绕点C按顺时针方向旋转,当点E恰好落在DF上的点H处时,连接AG,DG,BG,则AG的长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1的绝对值是___________,相反数是___________

2)计算下列各式:

3)无理数的整数部分是(

A1 B2 C3 D4

4)对于实数a,如果将不大于a的最大整数记为,则=_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示:

1)根据图示填写下表:

平均数(分)

中位数(分)

众数(分)

初中部

85

   

   

高中部

85

   

   

2)结合两队成绩的平均数中中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差,并判断哪一个代表队选手的成绩较为稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.

(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(3,1),在此坐标系下,B点的坐标为

(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为

(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c的图象过O、B、C三点,D为此抛物线的顶点。试求出抛物线解析式及D点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、点B是双曲线图象上的两点(AB的右侧).延长ABy轴正半轴于C,OC的中点为D.连结AO,BO,交点为E.BEO的面积为4,四边形AEDC的面积等于BEO的面积,则k的值为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.

(1)判断BEC的形状,并说明理由?

(2)判断四边形EFPH是什么特殊四边形?并证明你的判断;

(3)求四边形EFPH的面积.

查看答案和解析>>

同步练习册答案