精英家教网 > 初中数学 > 题目详情

如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.


【考点】全等三角形的判定与性质;等腰三角形的性质.

【专题】证明题.

【分析】根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.

【解答】证明:△ABC中,

∵AB=AC,

∴∠DBM=∠ECM,

∵M是BC的中点,

∴BM=CM,

在△BDM和△CEM中,

∴△BDM≌△CEM(SAS),

∴MD=ME.

【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如果等腰三角形两边长是6和3,那么它的周长是(     )

A.9       B.12     C.15或12   D.15

查看答案和解析>>

科目:初中数学 来源: 题型:


已知:如图,直线AD与BC交于点O,OA=OD,OB=OC.求证:AB∥CD.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中AD是∠A的外角平分线,P是AD上一动点且不与点A,D重合,记PB+PC=a,AB+AC=b,则a,b的大小关系是(     )

A.a>b  B.a=b   C.a<b  D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是__________

查看答案和解析>>

科目:初中数学 来源: 题型:


下列标志中,可以看作是轴对称图形的是(     )

A.   B.  C.   D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DF⊥AC交AC的延长线于F,连接CD,给出四个结论:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB﹣BC=2FC;其中正确的结论有(     )

A.1个  B.2个   C.3个  D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:


勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2

证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a

∵S四边形ADCB=SACD+SABC=b2+ab.

又∵S四边形ADCB=SADB+SDCB=c2+a(b﹣a)

b2+ab=c2+a(b﹣a)

∴a2+b2=c2

请参照上述证法,利用图2完成下面的证明.

将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,AO是边长为2的等边△ABC的高,点D是AO上的一个动点(点D不与点A、O重合),以CD为一边在AC下方作等边△CDE,连结BE并延长,交AC的延长线于点F.

(1)求证:△ACD≌△BCE;

(2)当△CEF为等腰三角形时,求△CEF的面积.

查看答案和解析>>

同步练习册答案