勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a
∵S四边形ADCB=S△ACD+S△ABC=
b2+
ab.
又∵S四边形ADCB=S△ADB+S△DCB=
c2+
a(b﹣a)
∴
b2+
ab=
c2+
a(b﹣a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明.
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.
![]()
科目:初中数学 来源: 题型:
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;
(2)在直线l上找一点P(在答题纸上图中标出),使PB+PC的长最短,这个最短长度的平方值是__________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )
![]()
A.△ABC 的三条中线的交点
B.△ABC 三边的中垂线的交点
C.△ABC 三条角平分线的交点
D.△ABC 三条高所在直线的交点
查看答案和解析>>
科目:初中数学 来源: 题型:
材料阅读:
在小学,我们了解到正方形的每个角都是90°,每条边都相等;本学期,我们通过折纸得到定理:直角三角形的斜边上的中线等于斜边的一半;同时探讨得知,在直角三角形中,30°的角所对的直角边是斜边的一半.
(1)如图1,在等边三角形△ABC内有一点P,且PA=2,PB=
,PC=1.求∠BPC的度数和等边△ABC的边长.
聪聪同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后
的图形(如图2).
连接PP′.根据聪聪同学的思路,可以证明△BPP′为等边三角形,又可以证明△ABP′≌△CBP,所以AP′=PC=1,根据勾股定理逆定理可证出△APP′为直角三角形,故此∠BPC=__________°;同时,可以说明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等边△ABC的边AB=__________.
(2)请你参考聪聪同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=
,BP=
,PC=1.求∠BPC的度数和正方形ABCD的边长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com