如图,AO是边长为2的等边△ABC的高,点D是AO上的一个动点(点D不与点A、O重合),以CD为一边在AC下方作等边△CDE,连结BE并延长,交AC的延长线于点F.
(1)求证:△ACD≌△BCE;
(2)当△CEF为等腰三角形时,求△CEF的面积.
![]()
【考点】全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质.
【分析】(1)由△ABC和△CDE是等边三角形,用“SAS”证得△ACD≌△BCE;
(2)首先作CP⊥BF于点P,由∠CBE=30°,求得CP的长,继而求得答案.
【解答】解:(1)∵△ABC为等边三角形
∴AC=BC,∠ACB=60°,
同理可证CD=CE,∠DCE=60°,
∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,
即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS);
(2)由(1)得∠CBE=∠CAD=30°,得△ABF恒为直角三角形,且∠F=30°CF=CB=2,
又因为点D不与点A、O重合,
所以当△CEF为等腰三角形时,∠F只能为顶角,
如图,作CP⊥BF于点P,
![]()
由∠CBE=30°,
得CP=
BC=1,
因为CF=EF=2,
所以S△CEF=
×2×1=1.
【点评】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:
两城镇A、B与两条公路ME、MF位置如图所示,现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部,那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留
作图痕迹)
![]()
两城镇A、B与两条公路ME、MF位置如图所示,现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部,那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I 都在长方形KLMJ的边上,则长方形KLMJ的面积为( )
![]()
A.90 B.100 C.110 D.121
查看答案和解析>>
科目:初中数学 来源: 题型:
材料阅读:
在小学,我们了解到正方形的每个角都是90°,每条边都相等;本学期,我们通过折纸得到定理:直角三角形的斜边上的中线等于斜边的一半;同时探讨得知,在直角三角形中,30°的角所对的直角边是斜边的一半.
(1)如图1,在等边三角形△ABC内有一点P,且PA=2,PB=
,PC=1.求∠BPC的度数和等边△ABC的边长.
聪聪同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后
的图形(如图2).
连接PP′.根据聪聪同学的思路,可以证明△BPP′为等边三角形,又可以证明△ABP′≌△CBP,所以AP′=PC=1,根据勾股定理逆定理可证出△APP′为直角三角形,故此∠BPC=__________°;同时,可以说明∠BPA=90°,在Rt△APB中,利用勾股定理,可以求出等边△ABC的边AB=__________.
(2)请你参考聪聪同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=
,BP=
,PC=1.求∠BPC的度数和正方形ABCD的边长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com